What is the Large Hadron Collider? (LHC)

large hadron collider LHC

The Large Hadron Collider (LHC) is the highest-energy particle collider and was built by the European Organisation for Nuclear Research (CERN) in collaboration with hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel 17 miles in circumference, near Geneva.

What is the Large Hadron Collider (LHC) and how does it work?

Hadron means subatomic composite particles composed of quarks bound by a strong electromagnetic force. Hadrons can be baryons such as protons and neutrons and may include mesons such as the pion and kaon.

A collider is a particle accelerator with two beams of particles, which accelerate to high kinetic energies. Analysis of the particle collisions gives evidence of the structure of the subatomic nature. The bi-products decay after a short period of time, therefore they are nearly impossible to study via other methods of experimentation.


Purpose of the Large Hadron Collider

The LHC answers fundamental questions, covering basic laws governing the interactions and forces among elementary objects, space and time and the relationship between quantum mechanics and general relativity. High-energy particle experiments also validate the very nature of the Standard Model and the Higgsless model.

Questions being answered by the LHC

Is the mass of elementary particles being generated by the Higgs mechanism via electroweak symmetry breaking? Experiments demonstrate or disprove the existence of the elusive Higgs boson, allowing physicists to consider whether the Standard Model or its Higgsless alternative are accurate theories.

Is supersymmetry realised in nature, implying all particles have supersymmetric partners?

Are there extra dimensions, as posed in string theory?

What is dark matter, accounting for 27% of the mass-energy within the universe?


Extended open questions explored by the LHC

Electromagnetism and the weak nuclear force are different variations of the electroweak force. The LHC may clarify whether the electroweak force and the strong nuclear force are simply different manifestations of one universal force.

Why is gravity much weaker than other fundamental forces?

Why are there violations of the symmetry between matter and antimatter?



Large Hadron Collider design and construction

The LHC sits within a 27km circular tunnel, at a depth of between 50 to 175 metres. An underground tunnel conveniently shields against background radiation from the earth. Constructed between 1983 and 1988, the LHC crosses the border between Switzerland and France at four points. Ancillary equipment such as compressors, ventilation equipment and refrigeration plants are all present on the surface.

Superconducting quadrupole electromagnets are used to direct the beams to four intersection points. The collider tunnel contains two adjacent parallel beamlines, each containing a beam, which travel in opposite directions. The beams intersect at four points around the ring, which is where the collisions occur. 1,232 dipole magnets maintain the beams’ path, while an additional 392 quadrupole magnets focus them. Further quadrupole magnets enhance the probability of interaction.


LHC – Superfluid Helium 4

Superfluid helium-4 keeps the magnets, made of copper-clad niobium-titanium, at −271.25 °C. Each day of operation it generates 140 terabytes of data. When running at 6.5 TeV per proton, acceleration from 450 GeV to 6.5 TeV, the field of the superconducting magnets is increased from 0.54 to 7.7 teslas (T). The protons each have an energy of 6.5 TeV, giving a total collision energy of 13 TeV and velocity of 3.1 m/s slower than the speed of light, equating to approx 90 microseconds for a proton to travel the perimeter of 26.7 km (11,245 revolutions per second).


Large hadron collider proton acceleration

Pre-main acceleration, particles are prepared by increasing their energy. Initially, the linear particle accelerator LINAC 2 feeds the Proton Synchrotron Booster. Protons will then be accelerated to 1.4 GeV and passed into the Proton Synchrotron, accelerated to 26 GeV and finally, the Super Proton Synchrotron increases their energy to 450 GeV. Here, the proton bunches are accumulated, accelerated (over a period of 20 minutes) to their peak energy.

The LHC is concerned with proton–proton collisions. However, shorter running periods, typically one month per year, heavy-ion collisions are included in the programme. The scheme deals with lead ions which are accelerated by the linear accelerator LINAC 3. The ions are then further accelerated where they reach an energy of 2.3 TeV per nucleon. The objective is to investigate quark–gluon plasma, which existed in the early universe.


Black Holes and Micro-black Holes generation at the Large Hadron Collider

It is suggested that specific extensions of the Standard Model would lead to the existence of extra spatial dimensions, potentially realising micro black holes. These would decay by Hawking radiation very quickly and are therefore not a threat in reality. This radiation is emitted by black holes due to quantum effects. As Hawking radiation leads to a loss of mass, black holes that lose more matter than they gain would shrink and cease to exist. Smaller micro black holes (MBHs), highly possible to construct at the LHC.

The LSAG are confident that even if micro black holes were produced by the LHC, they would be unable to accrete matter. They would also have been produced by cosmic rays and have stopped in neutron stars and white dwarfs, and the stability of these astronomical bodies means that they cannot be dangerous.



Discoveries at the Large Hadron Collider

The core focus of research from the beginning was to question the possible existence of the Higgs boson, part of the Standard Model. The LHC also searched for supersymmetric particles, aiming to uncover other possible unknown areas of physics. The Standard Model predicts particles, such as the W’ and Z’ gauge bosons, which were a target for the research in Geneva.


LHC discoveries from 2009–2013

Key early observations at  the LHC, involving 284 collisions (ALICE detector), were found in 2009. The first proton–proton collisions at energies higher than Fermilab’s Tevatron proton–antiproton collisions were announced in 2010.  In May 2011, the generation of quark–gluon plasma had been fulfilled in the LHC. Between July and August 2011, results of searches for the Higgs boson and other particles. In Mumbai, it was reported that ATLAS and CMS exclude with 95% confidence the existence of a Higgs boson with the properties predicted by the Standard Model between 145 and 466 GeV. On 13 December 2011, CERN reported that the Standard Model Higgs boson to have a mass constrained to 115–130 GeV. On 22 December 2011, it was reported that a new composite particle had been observed, the χb (3P) bottomonium state.

On 4 July 2012, both the CMS and ATLAS teams announced a boson, with a statistical significance at the level of 5 sigma each. The observed properties were consistent with the Higgs boson. Further analysis and final confirmation that the observed particle was the predicted Higgs Boson in 2013.

Another key observation, based on a classic question around supersymmetry, resulted in data that match those predicted by the non-supersymmetrical Standard Model rather than the predictions of many branches of supersymmetry. This shows the decays are less common than some forms of supersymmetry predict, later confirmed by the CMS collaboration.

In August 2013, the LHCb team revealed an anomaly in the angular distribution of B meson decay products which could not be predicted by the Standard Model. It is unknown what the cause of this anomaly would be, although the Z’ boson has been suggested as a possible candidate. On 19 November 2014, the LHCb experiment announced the discovery of two new heavy subatomic particles, Ξ′b and Ξ∗−b. Both of them are baryons that are composed of one bottom, one down, and one strange quark.

The LHCb collaboration has observed multiple exotic hadrons. On 4 April 2014, the collaboration confirmed the existence of the tetraquark candidate Z(4430). On 13 July 2015, results consistent with pentaquark states in the decay of bottom Lambda baryons (Λ0b) were also reported. In June 2016, the collaboration announced four tetraquark-like particles decaying into a J/ψ and a φ meson, only one of which was well established before (X(4274), X(4500) and X(4700) and X(4140)).


LHC discoveries from 2015-2019

In July 2015, the collaborations presented first cross-section measurements of several particles at the higher collision energy. In December, ATLAS and CMS reported preliminary results for Higgs physics, supersymmetry (SUSY) searches and exotics searches using 13 TeV proton collision data. Both experiments saw a moderate excess around 750 GeV in the two-photon invariant mass spectrum. In July 2017, many analyses based on the large dataset collected in 2016 were shown. The properties of the Higgs boson were studied in much more detail.



Large Hadron Collider future upgrades

The UK efforts as part of the collaborative update to the LHC is supported by scientists, engineers and technicians. A planned £26 million upgrade of the Large Hadron Collider. Key stakeholders include the Science and Technology Facilities Council (STFC), CERN, Cockcroft Institute, John Adams Institute eight UK universities including; University of Dundee, University of Huddersfield, Lancaster University, University of Liverpool, The University of Manchester, University of Oxford, Royal Holloway, University of London (RHUL) and University of Southampton.

The upgrade will focus on several optimisations. In addition to a possible increase to 14 TeV collision energy, a crucial  luminosity upgrade, called the High Luminosity Large Hadron Collider, will boost the accelerator’s potential for new discoveries in physics, starting in 2027.  This increases the luminosity of the machine by a factor of 10, up to 1035 cm−2s−1, providing a better chance to see rare processes and improving statistically marginal measurements.


Professor Mark Thomson, particle physicist and Executive Chair of STFC, said, ”This is a significant undertaking, yet one with fantastic benefits for the UK. The aim is for this project to involve UK industry at every stage, with specialist companies being invited to bid for contracts to manufacture high-tech components.”

LHC – the search for dark matter

95% of the universe is theoretically predicted to be dark matter (27%) and dark energy (68%) but physicists have not observed either. The increased luminosity of HL-LHC will facilitate possible evidence that could solve this conundrum.



Recent category posts


  1.  “The Large Hadron Collider”. CERN.
  2. Jump up to:a b Joel Achenbach (March 2008). “The God Particle”National Geographic Magazine. Retrieved 25 February 2008.
  3. ^ Highfield, Roger (16 September 2008). “Large Hadron Collider: Thirteen ways to change the world”The Daily Telegraph. London. Retrieved 10 October 2008.
  4. ^ “CERN LHC sees high-energy success”BBC News. 30 March 2010. Retrieved 30 March 2010.
  5. Jump up to:a b “LHC to run at 4 TeV per beam in 2012”Media and Press Relations (Press release). CERN. 13 February 2012.
  6. Jump up to:a b c Jonathan Webb (5 April 2015). “Large Hadron collider restarts after pause”BBC. Retrieved 5 April 2015.
  7. ^ O’Luanaigh, Cian. “Proton beams are back in the LHC”. CERN. Retrieved 24 April 2015.
  8. ^ Rincon, Paul (3 June 2015). “Large Hadron Collider turns on ‘data tap. Retrieved 28 August 2015.
  9. ^ Webb, Jonathan (21 May 2015). “LHC smashes energy record with test collisions”. Retrieved 28 August 2015.
  10. ^ “Missing Higgs”. CERN. 2008. Retrieved 10 October2008.
  11. ^ “Towards a superforce”. CERN. 2008. Retrieved 10 October 2008.
  12. ^ “LHCb – Large Hadron Collider beauty experiment”lhcb-public.web.cern.ch.
  13. ^ Street, J.; Stevenson, E. (1937). “New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron”Physical Review52 (9): 1003. Bibcode:1937PhRv…52.1003Sdoi:10.1103/PhysRev.52.1003S2CID 1378839.
  14. ^ “The Physics”ATLAS Experiment at CERN. 26 March 2015.
  15. ^ Overbye, Dennis (15 May 2007). “CERN – Large Hadron Collider – Particle Physics – A Giant Takes On Physics’ Biggest Questions”The New York TimesISSN 0362-4331. Retrieved 23 October 2019.
  16. ^ Giudice, G. F. (2010). A Zeptospace Odyssey: A Journey Into the Physics of the LHCOxford University PressISBN 978-0-19-958191-7. Archived from the original on 1 November 2013. Retrieved 11 August 2013.
  17. ^ Brian Greene (11 September 2008). “The Origins of the Universe: A Crash Course”The New York Times. Retrieved 17 April 2009.
  18. ^ “… in the public presentations of the aspiration of particle physics we hear too often that the goal of the LHC or a linear collider is to check off the last missing particle of the Standard Model, this year’s Holy Grail of particle physics, the Higgs bosonThe truth is much less boring than that! What we’re trying to accomplish is much more exciting, and asking what the world would have been like without the Higgs mechanism is a way of getting at that excitement.” – Chris Quigg (2005). “Nature’s Greatest Puzzles”. Econf C040802 (1). arXiv:hep-ph/0502070Bibcode:2005hep.ph….2070Q.
  19. ^ “Why the LHC”. CERN. 2008. Retrieved 28 September2009.
  20. ^ “Accordingly, in common with many of my colleagues, I think it highly likely that both the Higgs boson and other new phenomena will be found with the LHC.”…”This mass threshold means, among other things, that something new – either a Higgs boson or other novel phenomena – is to be found when the LHC turns the thought experiment into a real one.”Chris Quigg (February 2008). “The coming revolutions in particle physics”Scientific American298 (2): 38–45. Bibcode:2008SciAm.298b..46Qdoi:10.1038/scientificamerican0208-46OSTI 987233PMID 18376670.
  21. ^ Shaaban Khalil (2003). “Search for supersymmetry at LHC”. Contemporary Physics44 (3): 193–201. Bibcode:2003ConPh..44..193Kdoi:10.1080/0010751031000077378S2CID 121063627.
  22. ^ Alexander Belyaev (2009). “Supersymmetry status and phenomenology at the Large Hadron Collider”. Pramana72(1): 143–160. Bibcode:2009Prama..72..143Bdoi:10.1007/s12043-009-0012-0S2CID 122457391.
  23. ^ Anil Ananthaswamy (11 November 2009). “In SUSY we trust: What the LHC is really looking for”New Scientist.
  24. ^ Lisa Randall (2002). “Extra Dimensions and Warped Geometries” (PDF)Science296 (5572): 1422–1427. Bibcode:2002Sci…296.1422Rdoi:10.1126/science.1072567PMID 12029124S2CID 13882282.
  25. ^ Panagiota Kanti (2009). “Black Holes at the Large Hadron Collider”. Physics of Black HolesLecture Notes in Physics769. pp. 387–423. arXiv:0802.2218Bibcode:2009LNP…769..387Kdoi:10.1007/978-3-540-88460-6_10ISBN 978-3-540-88459-0S2CID 17651318.
  26. ^ “Heavy ions and quark-gluon plasma”. CERN. 18 July 2012.
  27. ^ “LHC experiments bring new insight into primordial universe”Media and Press Relations (Press release). CERN. 26 November 2010. Retrieved 2 December 2010.
  28. ^ Aad, G.; et al. (ATLAS Collaboration) (2010). “Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sNN = 2.76 TeV with the ATLAS detector at the LHC”Physical Review Letters105 (25): 252303. arXiv:1011.6182Bibcode:2010PhRvL.105y2303Adoi:10.1103/PhysRevLett.105.252303PMID 21231581.
  29. ^ https://cds.cern.ch/record/2255762/files/CERN-Brochure-2017-002-Eng.pdf
  30. ^ “The Z factory”. CERN. 2008. Retrieved 17 April 2009.
  31. ^ Henley, E. M.; Ellis, S. D., eds. (2013). 100 Years of Subatomic Physics. World Scientific. doi:10.1142/8605ISBN 978-981-4425-80-3.
  32. Jump up to:a b Stephen Myers (4 October 2013). “The Large Hadron Collider 2008-2013”International Journal of Modern Physics A28 (25): 1330035-1–1330035-65. Bibcode:2013IJMPA..2830035Mdoi:10.1142/S0217751X13300354.
  33. ^ Status of the LHC superconducting cable mass production2002″.
  34. ^ “Powering CERN”. CERN. 2018. Retrieved 23 June 2018.
  35. ^ Brady, Henry E. (11 May 2019). “The Challenge of Big Data and Data Science”Annual Review of Political Science22(1): 297–323. doi:10.1146/annurev-polisci-090216-023229ISSN 1094-2939.
  36. ^ “First successful beam at record energy of 6.5 TeV”. 10 April 2015. Retrieved 10 January 2016.
  37. ^ Deboy, D.; Assmann, R.W.; Burkart, F.; Cauchi, M.; Wollmann, D. (29 August 2011). “Acoustic measurements at LHC collimators” (PDF)LHC Collimation ProjectThe ring operates with an acoustic fundamental and overtones of 11.245 kHz
  38. ^ “Operational Experience of the ATLAS High Level Trigger with Single-Beam and Cosmic Rays” (PDF). Retrieved 29 October 2010.
  39. Jump up to:a b c “LHC performance reaches new highs”. 13 July 2016. Retrieved 13 May 2017.
  40. Jump up to:a b c d “Record luminosity: well done LHC”. 15 November 2017. Retrieved 2 December 2017.
  41. Jump up to:a b Jörg Wenninger (November 2007). “Operational challenges of the LHC” (PowerPoint). p. 53. Retrieved 17 April 2009.
  42. ^ “Ions for LHC (I-LHC) Project”. CERN. 1 November 2007. Retrieved 17 April 2009.
  43. ^ “Opinion: A new energy frontier for heavy ions”. 24 November 2015. Retrieved 10 January 2016.
  44. ^ Charley, Sarah. “Revamped LHC goes heavy metal”symmetry magazine. Retrieved 23 October 2019.
  45. ^ “How the Higgs Boson Was Found”Smithsonian. Retrieved 23 October 2019.
  46. Jump up to:a b Paul Rincon (10 September 2008). Big Bang’ experiment starts well”. BBC News. Retrieved 17 April 2009.
  47. ^ “Worldwide LHC Computing Grid”. CERN. 2008. Retrieved 2 October 2011.
  48. ^ “grille de production : les petits pc du lhc”. Cite-sciences.fr. Retrieved 22 May 2011.
  49. ^ “Welcome to the Worldwide LHC Computing Grid”WLCG – Worldwide LHC Computing Grid. CERN. Retrieved 13 May2017.
  50. ^ “About”WLCG – Worldwide LHC Computing Grid. CERN. Retrieved 13 May 2017.
  51. ^ “Worldwide LHC Computing Grid”Official public website. CERN. Archived from the original on 1 October 2011. Retrieved 2 October 2011.
  52. ^ “LHC@home”berkeley.edu.
  53. ^ Craig Lloyd (18 December 2012). “First LHC proton run ends in success, new milestone”. Retrieved 26 December2014.
  54. ^ “Hunt for Higgs boson hits key decision point”NBC News – Science – Technology & Science.
  55. ^ “Welcome to the Worldwide LHC Computing Grid”WLCG – Worldwide LHC Computing Grid. CERN. [A] global collaboration of more than 170 computing centres in 36 countries … to store, distribute and analyse the ~25 Petabytes (25 million Gigabytes) of data annually generated by the Large Hadron Collider
  56. ^ “What is the Worldwide LHC Computing Grid?”WLCG – Worldwide LHC Computing Grid. 14 November 2012. Archived from the original on 4 July 2012. Currently WLCG is made up of more than 170 computing centers in 36 countries … The WLCG is now the world’s largest computing grid
  57. Jump up to:a b “First beam in the LHC – accelerating science”Media and Press Relations (Press release). CERN. 10 September 2008. Retrieved 9 October 2008.
  58. Jump up to:a b Paul Rincon (23 September 2008). “Collider halted until next year”. BBC News. Retrieved 9 October 2008.
  59. Jump up to:a b “Large Hadron Collider – Purdue Particle Physics”. Physics.purdue.edu. Archived from the original on 17 July 2012. Retrieved 5 July 2012.
  60. ^ Hadron Collider.
  61. Jump up to:a b “The LHC is back”Media and Press Relations (Press release). CERN. 20 November 2009. Retrieved 13 November2016.
  62. ^ “Two circulating beams bring first collisions in the LHC”Media and Press Relations (Press release). CERN. 23 November 2009. Retrieved 13 November 2016.
  63. Jump up to:a b “What is LHCb” (PDF)CERN FAQ. CERN Communication Group. January 2008. p. 44. Archived from the original (PDF) on 26 March 2009. Retrieved 2 April2010.
  64. ^ Amina Khan (31 March 2010). “Large Hadron Collider rewards scientists watching at Caltech”Los Angeles Times. Retrieved 2 April 2010.
  65. ^ M. Hogenboom (24 July 2013). “Ultra-rare decay confirmed in LHC”BBC. Retrieved 18 August 2013.
  66. ^ “Challenges in accelerator physics”. CERN. 14 January 1999. Archived from the original on 5 October 2006. Retrieved 28 September 2009.
  67. ^ John Poole (2004). “Beam Parameters and Definitions”(PDF)LHC Design Report.
  68. ^ Agence Science-Presse (7 December 2009). “LHC: Un (très) petit Big Bang” (in French). Lien Multimedia. Retrieved 29 October 2010. Google translation
  69. ^ “How much does it cost?”. CERN. 2007. Archived from the original on 7 August 2011. Retrieved 28 September2009.
  70. ^ Luciano Maiani (16 October 2001). “LHC Cost Review to Completion”. CERN. Archived from the original on 27 December 2008. Retrieved 15 January 2001.
  71. ^ Toni Feder (2001). “CERN Grapples with LHC Cost Hike”Physics Today54 (12): 21–22. Bibcode:2001PhT….54l..21Fdoi:10.1063/1.1445534.
  72. ^ “Bursting magnets may delay CERN collider project”Reuters. 5 April 2007. Archived from the original on 3 May 2007. Retrieved 28 September 2009.
  73. ^ Paul Rincon (23 September 2008). “Collider halted until next year”BBC News. Retrieved 28 September 2009.
  74. ^ Robert Aymar (26 October 2005). “Message from the Director-General”Media and Press Relations (Press release). CERN. Retrieved 12 June 2013.
  75. ^ “Fermilab ‘Dumbfounded’ by fiasco that broke magnet”. Photonics.com. 4 April 2007. Retrieved 28 September 2009.
  76. ^ “Fermilab update on inner triplet magnets at LHC: Magnet repairs underway at CERN”Media and Press Relations(Press release). CERN. 1 June 2007. Archived from the original on 6 January 2009. Retrieved 28 September 2009.
  77. ^ “Updates on LHC inner triplet failure”Fermilab TodayFermilab. 28 September 2007. Retrieved 28 September 2009.
  78. ^ Paul Rincon (23 September 2008). “Collider halted until next year”. BBC News. Retrieved 29 September 2009.
  79. Jump up to:a b “LHC to restart in 2009”Media and Press Relations(Press release). CERN. 5 December 2008. Retrieved 13 November 2016.
  80. ^ Dennis Overbye (5 December 2008). “After repairs, summer start-up planned for collider”New York Times. Retrieved 8 December 2008.
  81. Jump up to:a b “News on the LHC”. CERN. 16 July 2009. Retrieved 28 September 2009.
  82. Jump up to:a b “Restarting the LHC: Why 13 Tev?”. CERN. Retrieved 28 August 2015.
  83. ^ “First LHC magnets prepped for restart”Symmetry Magazine. Retrieved 28 August 2015.
  84. ^ Mark Henderson (10 September 2008). “Scientists cheer as protons complete first circuit of Large Hadron Collider”Times Online. London. Retrieved 6 October 2008.
  85. Jump up to:a b c d “Interim Summary Report on the Analysis of the 19 September 2008 Incident at the LHC” (PDF). CERN. 15 October 2008. EDMS 973073. Retrieved 28 September 2009.
  86. ^ “Incident in LHC sector 3–4”Media and Press Relations(Press release). CERN. 20 September 2008. Retrieved 13 November 2016.
  87. ^ “CERN releases analysis of LHC incident”Media and Press Relations (Press release). CERN. 16 October 2008. Retrieved 13 November 2016.
  88. ^ “Final LHC magnet goes underground”Media and Press Relations (Press release). CERN. 30 April 2009. Retrieved 13 November 2016.
  89. ^ L. Rossi (2010). “Superconductivity: its role, its success and its setbacks in the Large Hadron Collider of CERN” (PDF)Superconductor Science and Technology23 (3): 034001. Bibcode:2010SuScT..23c4001Rdoi:10.1088/0953-2048/23/3/034001.
  90. ^ “CERN announces start-up date for LHC”Media and Press Relations (Press release). CERN. 7 August 2008. Retrieved 13 November 2016.
  91. ^ “CERN management confirms new LHC restart schedule”Media and Press Relations (Press release). CERN. 9 February 2009. Retrieved 13 November 2016.
  92. ^ “CERN inaugurates the LHC”Media and Press Relations(Press release). CERN. 21 October 2008. Retrieved 21 October 2008.
  93. ^ Seminar on the physics of LHC by John Iliopoulos, École Normale Supérieure, Paris, 2009.
  94. ^ “LHC sets new world record”Media and Press Relations(Press release). CERN. 30 November 2009. Retrieved 13 November 2016.
  95. ^ “Big Bang Machine sets collision record”The Hindu. Associated Press. 30 March 2010.
  96. ^ “CERN completes transition to lead-ion running at the LHC”Media and Press Relations (Press release). CERN. 8 November 2010. Retrieved 28 February 2016.
  97. ^ “The Latest from the LHC : Last period of proton running for 2010. – CERN Bulletin”. Cdsweb.cern.ch. 1 November 2010. Retrieved 17 August 2011.
  98. ^ “The first LHC protons run ends with new milestone”Media and Press Relations (Press release). CERN. 17 December 2012.
  99. ^ “Long Shutdown 1: Exciting times ahead”cern.ch. Retrieved 28 August 2015.
  100. ^ “CERN”cern.ch. Retrieved 28 August 2015.
  101. ^ “LHC 2015 – latest news”cern.ch. Retrieved 19 January2016.
  102. ^ “LHC consolidations: A step-by-step guide”. CERN.
  103. ^ O’Luanaigh, Cian. “First successful beam at record energy of 6.5 TeV”. CERN. Retrieved 24 April 2015.
  104. Jump up to:a b O’Luanaigh, Cian (21 May 2015). “First images of collisions at 13 TeV”. CERN.
  105. Jump up to:a b “Physicists eager for new high-energy Large Hadron Collider run”Science Daily. 3 June 2015. Retrieved 4 June2015.
  106. Jump up to:a b “LHC Report: end of 2016 proton-proton operation”. 31 October 2016. Retrieved 27 January 2017.
  107. ^ “LHC Report: far beyond expectations”. 13 December 2016. Retrieved 27 January 2017.
  108. ^ “LHC Schedule 2018” (PDF).
  109. ^ “LHC long term schedule”lhc-commissioning.web.cern.ch.
  110. ^ “LHC sets new world record”Media and Press Relations(Press release). CERN. 30 November 2009. Retrieved 13 November 2016.
  111. Jump up to:a b First Science Produced at LHC 2009-12-15
  112. ^ “LHC sees first stable-beam 3.5 TeV collisions of 2011”. symmetry breaking. 13 March 2011. Retrieved 15 March 2011.
  113. ^ “LHC sets world record beam intensity”Media and Press Relations (Press release). CERN. 22 April 2011. Retrieved 13 November 2016.
  114. Jump up to:a b “Densest Matter Created in Big-Bang Machine”nationalgeographic.com. 26 May 2011.
  115. ^ “LHC achieves 2011 data milestone”Media and Press Relations (Press release). CERN. 17 June 2011. Retrieved 20 June 2011.
  116. ^ Anna Phan. “One Recorded Inverse Femtobarn!!!”Quantum Diaries.
  117. Jump up to:a b Jonathan Amos (22 December 2011). “LHC reports discovery of its first new particle”BBC News.
  118. ^ “LHC physics data taking gets underway at new record collision energy of 8TeV”Media and Press Relations (Press release). CERN. 5 April 2012. Retrieved 13 November 2016.
  119. ^ “New results indicate that new particle is a Higgs boson”. CERN. 14 March 2013. Retrieved 14 March 2013.
  120. Jump up to:a b Ghosh, Pallab (12 November 2012). “Popular physics theory running out of hiding places”BBC News. Retrieved 14 November 2012.
  121. ^ “The first LHC protons run ends with new milestone”Media and Press Relations (Press release). CERN. 17 December 2012. Retrieved 10 March 2014.
  122. ^ “First successful beam at record energy of 6.5 TeV”. CERN. 10 April 2015. Retrieved 5 May 2015.
  123. ^ cds.cern.chhttps://cds.cern.ch/journal/CERNBulletin/2015/49/News+Articles/2105084?ln=en. Missing or empty |title= (help)
  124. Jump up to:a b c “LHC Report: Another run is over and LS2 has just begun…”CERN.
  125. ^ P. Rincon (17 May 2010). “LHC particle search ‘nearing’, says physicist”. BBC News.
  126. ^ V. Khachatryan et al. (CMS collaboration) (2010). “Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 0.9 and 2.36 TeV”Journal of High Energy Physics2010 (2): 1–35. arXiv:1002.0621Bibcode:2010JHEP…02..041Kdoi:10.1007/JHEP02(2010)041.
  127. ^ V. Khachatryan et al. (CMS collaboration) (2011). “Search for Microscopic Black Hole Signatures at the Large Hadron Collider”Physics Letters B697 (5): 434–453. arXiv:1012.3375Bibcode:2011PhLB..697..434Cdoi:10.1016/j.physletb.2011.02.032.
  128. ^ V. Khachatryan et al. (CMS collaboration) (2011). “Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy”Physics Letters B698 (3): 196–218. arXiv:1101.1628Bibcode:2011PhLB..698..196Cdoi:10.1016/j.physletb.2011.03.021.
  129. ^ G. Aad et al. (ATLAS collaboration) (2011). “Search for supersymmetry using final states with one lepton, jets, and missing transverse momentum with the ATLAS detector in√s = 7 TeV pp”Physical Review Letters106 (13): 131802. arXiv:1102.2357Bibcode:2011PhRvL.106m1802Adoi:10.1103/PhysRevLett.106.131802PMID 21517374.
  130. ^ G. Aad et al. (ATLAS collaboration) (2011). “Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in √s = 7 TeV proton-proton collisions”Physics Letters B701 (2): 186–203. arXiv:1102.5290Bibcode:2011PhLB..701..186Adoi:10.1016/j.physletb.2011.05.061.
  131. ^ Chalmers, M. Reality check at the LHCphysicsworld.com, 18 January 2011
  132. ^ McAlpine, K. Will the LHC find supersymmetry?Archived 25 February 2011 at the Wayback Machinephysicsworld.com, 22 February 2011
  133. ^ Geoff Brumfiel (2011). “Beautiful theory collides with smashing particle data”Nature471 (7336): 13–14. Bibcode:2011Natur.471…13Bdoi:10.1038/471013aPMID 21368793.
  134. ^ “LHC experiments present their latest results at Europhysics Conference on High Energy Physics”Media and Press Relations (Press release). CERN. 21 July 2011. Retrieved 13 November 2016.
  135. ^ “LHC experiments present latest results at Mumbai conference”Media and Press Relations (Press release). CERN. 22 August 2011. Retrieved 13 November 2016.
  136. ^ Pallab Ghosh (22 August 2011). “Higgs boson range narrows at European collider”. BBC News.
  137. ^ Pallab Ghosh (27 August 2011). “LHC results put supersymmetry theory ‘on the spot. BBC News.
  138. ^ “LHCb experiment sees Standard Model physics”Symmetry Magazine. SLAC/Fermilab. 29 August 2011. Retrieved 1 September 2011.
  139. ^ “ATLAS and CMS experiments present Higgs search status”Media and Press Relations (Press release). CERN. 13 December 2011. Retrieved 13 November 2016.
  140. ^ “CERN experiments observe particle consistent with long-sought Higgs boson”Media and Press Relations (Press release). CERN. 4 July 2012. Retrieved 9 November 2016.
  141. ^ “Now confident: CERN physicists say new particle is Higgs boson (Update 3)”. Phys Org. 14 March 2013. Retrieved 4 December 2019.
  142. ^ LHCb Collaboration (7 January 2013). “First Evidence for the Decay {\displaystyle B_{s}^{0}\rightarrow \mu ^{+}\mu ^{-}}“. Physical Review Letters110 (2): 021801. arXiv:1211.2674Bibcode:2013PhRvL.110b1801Adoi:10.1103/PhysRevLett.110.021801PMID 23383888S2CID 13103388.
  143. ^ CMS collaboration (5 September 2013). “Measurement of the {\displaystyle B_{s}^{0}\rightarrow \mu ^{+}\mu ^{-}} Branching Fraction and Search for {\displaystyle B^{0}\rightarrow \mu ^{+}\mu ^{-}} with the CMS Experiment”Physical Review Letters111 (10): 101804. arXiv:1307.5025Bibcode:2013PhRvL.111j1804Cdoi:10.1103/PhysRevLett.111.101804PMID 25166654.
  144. ^ “Hints of New Physics Detected in the LHC?”. 10 May 2017.
  145. ^ New subatomic particles predicted by Canadians found at CERN, 19 November 2014
  146. ^ “LHCb experiment observes two new baryon particles never seen before”Media and Press Relations (Press release). CERN. 19 November 2014. Retrieved 19 November 2014.
  147. ^ O’Luanaigh, Cian (9 April 2014). “LHCb confirms existence of exotic hadrons”. CERN. Retrieved 4 April 2016.
  148. ^ Aaij, R.; et al. (LHCb collaboration) (4 June 2014). “Observation of the resonant character of the Z(4430)− state”Physical Review Letters112 (21): 222002. arXiv:1404.1903Bibcode:2014PhRvL.112v2002Adoi:10.1103/PhysRevLett.112.222002PMID 24949760.
  149. ^ Aaij, R.; et al. (LHCb collaboration) (12 August 2015). “Observation of J/ψp resonances consistent with pentaquark states in Λ0
    b→J/ψKp decays”
    Physical Review Letters115(7): 072001. arXiv:1507.03414Bibcode:2015PhRvL.115g2001Adoi:10.1103/PhysRevLett.115.072001PMID 26317714.
  150. ^ “CERN’s LHCb experiment reports observation of exotic pentaquark particles”Media and Press Relations (Press release). CERN. Retrieved 28 August 2015.
  151. ^ Rincon, Paul (1 July 2015). “Large Hadron Collider discovers new pentaquark particle”BBC News. Retrieved 14 July 2015.
  152. ^ Aaij, R.; et al. (LHCb collaboration) (2017). “Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+→J/ψφK+ decays”. Physical Review Letters118(2): 022003. arXiv:1606.07895Bibcode:2017PhRvL.118b2003Adoi:10.1103/PhysRevLett.118.022003PMID 28128595S2CID 206284149.
  153. ^ Aaij, R.; et al. (LHCb collaboration) (2017). “Amplitude analysis of B+→J/ψφK+ decays”. Physical Review D95 (1): 012002. arXiv:1606.07898Bibcode:2017PhRvD..95a2002Adoi:10.1103/PhysRevD.95.012002S2CID 73689011.
  154. ^ “ATLAS releases first measurement of the W mass using LHC data”. 13 December 2016. Retrieved 27 January 2017.
  155. ^ Overbye, Dennis (15 December 2015). “Physicists in Europe Find Tantalizing Hints of a Mysterious New Particle”New York Times. Retrieved 15 December 2015.
  156. ^ CMS Collaboration (15 December 2015). “Search for new physics in high mass diphoton events in proton-proton collisions at 13 TeV”Compact Muon Solenoid. Retrieved 2 January 2016.
  157. ^ ATLAS Collaboration (15 December 2015). “Search for resonances decaying to photon pairs in 3.2 fb-1 of pp collisions at √s = 13 TeV with the ATLAS detector” (PDF). Retrieved 2 January 2016.
  158. ^ CMS Collaboration. “CMS Physics Analysis Summary”(PDF). CERN. Retrieved 4 August 2016.
  159. ^ Overbye, Dennis (5 August 2016). “The Particle That Wasn’t”New York Times. Retrieved 5 August 2016.
  160. ^ “Chicago sees floods of LHC data and new results at the ICHEP 2016 conference”Media and Press Relations(Press release). CERN. 5 August 2015. Retrieved 5 August2015.
  161. ^ “LHC experiments delve deeper into precision”Media and Press Relations (Press release). CERN. 11 July 2017. Retrieved 23 July 2017.
  162. ^ “A new schedule for the LHC and its successor”. 13 December 2019.
  163. ^ Alan Boyle (2 September 2008). “Courts weigh doomsday claims”Cosmic LogMSNBC. Retrieved 28 September2009.
  164. ^ J.-P. Blaizot; J. Iliopoulos; J. Madsen; G.G. Ross; P. Sonderegger; H.-J. Specht (2003). “Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC”(PDF). CERN. Retrieved 28 September 2009.
  165. Jump up to:a b Ellis, J.; Giudice, G.; Mangano, M.L.; Tkachev, T.; Wiedemann, U. (2008). “Review of the Safety of LHC Collisions”. Journal of Physics G35 (11): 115004. arXiv:0806.3414Bibcode:2008JPhG…35k5004Edoi:10.1088/0954-3899/35/11/115004S2CID 53370175.
  166. ^ “The safety of the LHC”Media and Press Relations(Press release). CERN. 2008. Retrieved 28 September 2009.
  167. ^ Division of Particles & Fields“Statement by the Executive Committee of the DPF on the Safety of Collisions at the Large Hadron Collider” (PDF)American Physical Society. Archived from the original (PDF) on 24 October 2009. Retrieved 28 September 2009.
  168. ^ Katherine McAlpine (28 July 2008). “Large Hadron Rap”YouTube. Retrieved 8 May 2011.
  169. ^ Roger Highfield (6 September 2008). “Rap about world’s largest science experiment becomes YouTube hit”Daily Telegraph. London. Retrieved 28 September 2009.
  170. ^ Jennifer Bogo (1 August 2008). “Large Hadron Collider rap teaches particle physics in 4 minutes”Popular Mechanics. Retrieved 28 September 2009.
  171. ^ Malcolm W Brown (29 December 1998). “Physicists Discover Another Unifying Force: Doo-Wop” (PDF)New York Times. Retrieved 21 September 2010.
  172. ^ Heather McCabe (10 February 1999). “Grrl Geeks Rock Out” (PDF)Wired News. Retrieved 21 September 2010.
  173. ^ “Atom Smashers”World’s Toughest Fixes. Season 2. Episode 6. National Geographic Channel. Archived from the original on 2 May 2014. Retrieved 15 June 2014.
  174. ^ Boyle, Rebecca (31 October 2012). “Large Hadron Collider Unleashes Rampaging Zombies”. Retrieved 22 November2012.
  175. ^ Taylor, Allen (2011). “Angels and Demons”New Scientist. CERN. 214 (2871): 31. Bibcode:2012NewSc.214R..31Tdoi:10.1016/S0262-4079(12)61690-X. Retrieved 2 August2015.
  176. ^ Ceri Perkins (2 June 2008). “ATLAS gets the Hollywood treatment”ATLAS e-News. Retrieved 2 August 2015.
  177. ^ “FlashForward”. CERN. September 2009. Retrieved 3 October 2009.
  178. https://en.wikipedia.org/wiki/Large_Hadron_Collider
  179. https://cerncourier.com/a/one-higgs-three-discoveries/
  180. https://www.ukri.org/news/upgrade-to-large-hadron-collider-underway/
  181. https://en.wikipedia.org/wiki/Safety_of_high-energy_particle_collision_experiments
  182.  Boyle, Alan (19 August 2008). “Twists in the Doomsday debate“. Cosmic Logmsnbc.com.
  183. Jump up to:a b c Blaizot JP, Iliopoulos J, Madsen J, Ross GG, Sonderegger P, Specht HJ (2003). Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC. CERN. Geneva. CERN-2003-001.
  184. Jump up to:a b c d e f g h i j k l m n o Ellis, John; Giudice, Gian; Mangano, Michelangelo; Tkachev, Igor; Wiedemann, Urs; LHC Safety Assessment Group (2008). “Review of the safety of LHC collisions”. Journal of Physics G: Nuclear and Particle Physics35 (11): 115004. arXiv:0806.3414Bibcode:2008JPhG…35k5004Edoi:10.1088/0954-3899/35/11/115004S2CID 53370175.
  185. Jump up to:a b c d The safety of the LHC“. CERN 2008 (CERN website).
  186. Jump up to:a b CERN Scientific Policy Committee (2008). SPC Report on LSAG DocumentsCERN record.
  187. Jump up to:a b Statement by the Executive Committee of the DPF on the Safety of Collisions at the Large Hadron ColliderArchived 2009-10-24 at the Wayback Machine” issued by the Division of Particles & Fields (DPF) of the American Physical Society (APS)
  188. Jump up to:a b LHC switch-on fears are completely unfounded“. The Institute of Physics. PR 48 (08). 5 September 2008.
  189. ^ CERN Communication Group (January 2008). “CERN FAQ — LHC: the guide Archived 2009-03-26 at the Wayback Machine” (PDF). CERN. Geneva (44p).
  190. ^ Achenbach, Joel (1 March 2008). “The God Particle“. National Geographic Magazine.
  191. ^ CERN press release (2009) “LHC ends 2009 run on a high note.
  192. ^ “CERN LHC sees high-energy success” (Press release). BBC News. 30 March 2010. Retrieved 2010-03-30.
  193. ^ Record breaking collision at 13TeV, CERN Press release
  194. Jump up to:a b BBC End Days (Documentary)
  195. ^ Matthews, Robert (28 August 1999). “A Black Hole Ate My Planet“. New Scientist.
  196. ^ HorizonEnd DayBBC. 2005.
  197. Jump up to:a b c Wagner, Walter (July 1999). “Black holes at Brookhaven?”. Letters to the Editors. Scientific American. Vol. 281 no. 1. p. 8. doi:10.1038/scientificamerican0799-8JSTOR 26058304.
  198. Jump up to:a b c Wilczek, Frank (July 1999). “[Reply to “Black holes at Brookhaven?”]”. Letters to the Editors. Scientific American. Vol. 281 no. 1. p. 8. doi:10.1038/scientificamerican0799-8JSTOR 26058304.
  199. Jump up to:a b Dar, Arnon; De Rújula, A.; Heinz, Ulrich (1999). “Will relativistic heavy-ion colliders destroy our planet?”. Physics Letters B470 (1–4): 142–148. arXiv:hep-ph/9910471Bibcode:1999PhLB..470..142Ddoi:10.1016/S0370-2693(99)01307-6S2CID 17837332.
  200. Jump up to:a b c d Jaffe, R. L.; Busza, W.; Wilczek, F.; Sandweiss, J. (2000). “Review of speculative “disaster scenarios” at RHIC”. Reviews of Modern Physics72 (4): 1125–1140. arXiv:hep-ph/9910333Bibcode:2000RvMP…72.1125Jdoi:10.1103/RevModPhys.72.1125S2CID 444580.
  201. ^ T. D. Gutierrez, “Doomsday Fears at RHIC,” Skeptical Inquirer 24, 29 (May 2000)
  202. ^ Matthews, Robert (28 August 1999). “A Black Hole Ate My Planet”New Scientist.
  203. ^ <Please add first missing authors to populate metadata.> (2005). “Horizon: End Day”. BBC.
  204. ^ Cf. Brookhaven Report mentioned by Rees, Martin (Lord), Our Final Century: Will the Human Race Survive the Twenty-first Century?, U.K., 2003, ISBN 0-465-06862-6; note that the mentioned “1 in 50 million” chance is disputed as being a misleading and played down probability of the serious risks (Aspden, U.K., 2006)
  205. ^ Mukerjee, Madhusree (February 1998). “Brookhaven Brouhaha”. Scientific American. Vol. 278 no. 2. pp. 15–16. doi:10.1038/scientificamerican0298-15JSTOR 26057648.
  206. ^ Sunday Times, 18 July 1999.
  207. ^ e.g. ABCNEWS.com, from the Internet Archive.
  208. ^ e.g. NBC News, June 14, 2000.
  209. ^ United States District Court, Eastern District of New York, Case No. 00CV1672, Walter L. Wagner vs. Brookhaven Science Associates, L.L.C. (2000); United States District Court, Northern District of California, Case No. C99-2226, Walter L. Wagner vs. U.S. Department of Energy, et al. (1999)
  210. ^ BBC, 17 March 2005.
  211. ^ Nastase, Horatiu (2005). “The RHIC fireball as a dual black hole”. arXiv:hep-th/0501068.
  212. ^ E. S. Reich, New Scientist 185:2491, 16 (2005).
  213. Jump up to:a b c d Boyle, Alan (2 September 2008). “Courts weigh doomsday claims“. Cosmic Logmsnbc.com.
  214. Jump up to:a b Some fear debut of powerful atom-smasher” CNN.com. 30 June 2008.
  215. ^ Muir, Hazel. (28 March 2008). “Particle smasher ‘not a threat to the Earth’“. NewScientist.com.
  216. Jump up to:a b c Overbye, Dennis (21 June 2008). “Earth Will Survive After All, Physicists Say“. The New York Times.
  217. ^ Sancho, Luis (June 2008). “Fear review“. Harper’s Magazine.
  218. Jump up to:a b c Boyle, Alan (27 March 2008). “Doomsday Fears Spark Lawsuit“. Cosmic Logmsnbc.com.
  219. ^ Catastrophe: “Risk and Response” http://www.bsos.umd.edu/gvpt/lpbr/subpages/reviews/posner505.htm
  220. ^ Ord, Toby; Hillerbrand, Rafaela; Sandberg, Anders (2008). “Probing the Improbable: Methodological Challenges for Risks with Low Probabilities and High Stakes”. arXiv:0810.5515[physics.soc-ph].
  221. ^ Bailey, Ronald (2 September 2008). “A 1-in-1,000 Chance of Götterdämmerung: Will European physicists destroy the world?“. Reason Magazine.
  222. ^ Crease, Robert P. (May 2005). “Are accelerators dangerous?” Physics World.
  223. ^ Warner, Gerald (10 September 2008). “We must be wary of scientific research“. telegraph.co.uk.
  224. ^ Deatrick, Sherry R. (2008). “Large Hadron Collider: Cause for ConCERN or Tempest in a Teapot?”Journal of System Safety44: 3.
  225. ^ Overbye, Dennis (15 April 2008). “Gauging a Collider’s Odds of Creating a Black Hole“. The New York Times.
  226. Jump up to:a b Highfield, Roger (5 September 2008). “Scientists get death threats over Large Hadron Collider“. Telegraph.co.uk.
  227. ^ UPDATE: Small Romanian party sparks mockery saying LHC experiment may create tiny black holes and that CERN experiment should be halted“. Hotnews.ro. 9 septembrie 2008.
  228. ^ Threats Won’t Stop Collider Archived 2008-09-14 at the Wayback Machine“. Photonics.Com. 9 September 2008.
  229. ^ Henderson, Mark (5 September 2008). “The Large Hadron Collider: how the press demeans science“. The Times.
  230. Jump up to:a b Sugden, Joanna (6 September 2008). “Large Hadron Collider will not turn world to goo, promise scientists“. Times Online.
  231. ^ Carus, Felicity (7 September 2008). “Should we be concerned when the world’s largest subatomic particle experiment is switched on in Geneva?” guardian.co.uk.
  232. ^ Connor, Steve (5 September 2008). “The Big Question: Is our understanding of the Universe about to be transformed?“. The Independent.
  233. ^ Massive physics experiment on Wednesday“. The Sydney Morning Herald. 8 September 2008.
  234. Jump up to:a b Harrell, Eben (4 September 2008). “Collider Triggers End-of-World Fears“. Time.com.
  235. Jump up to:a b Landau, Elizabeth (8 September 2008). “Multibillion-dollar collider to probe nature’s mysteries“. CNN.
  236. Jump up to:a b c Boyle, Alan (12 September 2008). “Big Bang sparks big reaction“. Cosmic Log. msnbc.
  237. Jump up to:a b Rincon, Paul (23 June 2008). “Earth ‘not at risk’ from collider“. BBC News.
  238. ^ Greene, Brian (11 September 2008). “The Origins of the Universe: A Crash Course.” The New York Times.
  239. ^ Girl suicide ‘over Big Bang fear’“. BBC News. 11 September 2008.
  240. ^ Andersen, Kurt The Genesis 2.0 Project published in Vanity Fair Jan. 2010. p.96
  241. ^ The Daily Show April 30, 2009: Large Hadron Collider
  242. ^ Giddings, Steven B.; Thomas, Scott (2002). “High energy colliders as black hole factories: The end of short distance physics”. Physical Review D65 (5): 056010. arXiv:hep-ph/0106219Bibcode:2002PhRvD..65e6010Gdoi:10.1103/PhysRevD.65.056010S2CID 1203487.
  243. ^ Dimopoulos, Savas; Landsberg, Greg (2001). “Black Holes at the Large Hadron Collider”. Physical Review Letters87(16): 161602. arXiv:hep-ph/0106295Bibcode:2001PhRvL..87p1602Ddoi:10.1103/PhysRevLett.87.161602PMID 11690198S2CID 119375071.
  244. Jump up to:a b Barrau, Aurélien; & Grain, Julien (12 November 2004). “The case for mini black holes“. CERN Courier. CERN.
  245. ^ Panagiota Kanti (2009). Black Holes at the LHCLect.Notes Phys. Lecture Notes in Physics. 769. pp. 387–423. arXiv:0802.2218Bibcode:2009LNP…769..387Kdoi:10.1007/978-3-540-88460-6_10ISBN 978-3-540-88459-0S2CID 17651318.
  246. ^ Choptuik, Matthew W.; Pretorius, Frans (2010). “Ultrarelativistic Particle Collisions”. Physical Review Letters104 (11): 111101. arXiv:0908.1780Bibcode:2010PhRvL.104k1101Cdoi:10.1103/PhysRevLett.104.111101PMID 20366461S2CID 6137302.
  247. ^ Cavaglià, Marco (29 January 2007). “Particle accelerators as black hole factories?“. Einstein-Online. Max Planck Institute for Gravitational Physics (Albert Einstein Institute)