Moscovium Mc Element 155

Moscovium (Mc), element 115 in the periodic table, is a synthetic element with the atomic number 115. On 28 November 2016, it was officially named after the Moscow Oblast. The most stable isotope, moscovium-290, has a half-life of less than 0.68 seconds. Moscovium is also known as eka-bismuth, originally named as ununpentium (Uup).



What is Moscovium, element 115 ?

Element 115 is situated in the p-block, sat in the 7th period and is the heaviest pnictogen. The properties are similar to nitrogen, phosphorus and bismuth. It also has similarities to thallium.

P Block elements are good conductors of electricity as they have a tendency to lose their electrons. P block elements have extremely diverse properties. Gallium, for example, that can literally melt in your hands. In contrast, silicon is a metalloid, used extensively in the manufacture of glass.



Moscovium – How is it synthesised?

The heaviest atomic nuclei are created by combining two nuclei. The heaviest nuclei is then bombarded by a beam of lighter nuclei. Fusion occurs if they approach each other closely enough. The beam of nuclei are accelerated, making repulsion forces negligible, relative to the beam velocity. If fusion occurs, a compound nucleus is in an excited state. To lose its excitation energy and to become stable, it either fissions or ejects neutrons.


Moscovium discovery – key milestones

Moscovium was first synthesised by a team of Russian and American scientists at JINR. 289Mc and 290Mc, were discovered in 2009, child variants of the tennessine isotopes 293Ts and 294Ts. 289Mc was later confirmed to have the same properties as found in the Ts experiments. In 2013, Lund University and Gesellschaft für Schwerionenforschung (GSI) validated the original experiment. In 2017, the Dubna team published a journal, observing the nuclides 293Ts and 289Mc.


Berkeley Lab and FIONA – scientific contributions 

Berkeley Lab’s contributions to research in heavy-elements is world renowned. They have played a part in the discovery of no less than 16 elements, starting with the synthesis of neptunium in the 40’s. FIONA is an upgrade plugin to the Berkeley Gas-filled Separator. BGS separates heavy elements from charged particles that are effectively noise. It separates them based on their mass and charge properties, and delivers them to a low-noise detector.

Physical properties of Moscovium

Moscovium is a member of group 15, the pnictogens. Pnictogen has a configuration of ns2np3. Moscovium exhibits the valence electron configuration of 7s27p3. Mc also demonstrates other properties relating to its spin–orbit. It’s chemistry is not the same as other congeners. Nihonium for example, has one electron outside a quasi-closed shell configuration that can be delocalised in the metallic state. They have similar boiling and melting points. The metallic bonds are also of a similar strength. Ionisation potential and polarisability follow more closely to Tl+ than Bi+3.

Chemical properties of Moscovium

The chemistry of moscovium would be expected to follow Mc+ and Mc3+ ions. Moscovium (I), hydroxide (McOH), carbonate (Mc2CO3), oxalate (Mc2C2O4) and fluoride (McF) should all be soluble in water. Both moscovium(I) and moscovium(III) should be common oxidation states.

Element 115 – The Bob Lazar story

In 1989, an ex-employee of Los Alamos, Bob Lazar, claimed he had worked with element 115 at a secret facility, infamously referred to as Area 51. His work was part of a top secret reverse engineering program. Lazar predicted that we would see the future creation of unstable isotopes of 115 – a prediction that has materialised in recent years. It is “impossible to synthesise an element that heavy here on Earth. The substance has to come from a place where super-heavy elements could have been produced naturally,” Lazar stated. Lazar has conducted many interviews in print and on screen, podcast and radio, revealing his remit as a research scientist at the Nevada test site, also know as ‘Groom Lake.’

Consistently, Lazar has been thwarted and pushed-back, often in an effort to destabilise him and his family. Many attempts have been made to discredit his professional career and past history. Lazar claimed witnessing anti-gravity propulsion, and a number of undistinguishable craft stored in a hangar at the base. He concluded that the core propulsion system was effecting the force of gravity locally, facilitating a form of travel through space that was not yet understood by mainstream science. He intimated that the characteristics of element 115 could be central to this poorly understood propulsion system. Lazar claims to have earned a master’s degree in physics from the Massachusetts Institute of Technology (MIT), and a master’s degree in electronic technology from the California Institute of Technology. There are no records of him studying at either. His alleged employment at a Nellis Air Force Base has been rejected by the United States Air Force.

Evidence supporting Lazar’s claims include this example from The Alamogordo Daily News featuring Lazar’s jet-powered car, citing “a physicist at the Los Alamos Meson Physics Facility.” Lazar alleges that his records have been erased; however, skeptics such as Donald R. Prothero, Stanton T. Friedman, and Timothy D. Callahan have counted this. According to Prothero, “He was employed not by the government but rather as a technician working for a private company that contracted work at Los Alamos.” Lazar maintains, to this day, quite intricate details around his experiences from this period, with remarkable consistency.


Recent category posts

  1.  Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). “Transactinides and the future elements”. In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business MediaISBN 978-1-4020-3555-5.
  2. Jump up to:a b c d e f g h i j k l m n o p q r s t u v Fricke, Burkhard (1975). “Superheavy elements: a prediction of their chemical and physical properties”Recent Impact of Physics on Inorganic Chemistry21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  3. Jump up to:a b Bonchev, Danail; Kamenska, Verginia (1981). “Predicting the Properties of the 113–120 Transactinide Elements”Journal of Physical Chemistry. American Chemical Society. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  4. ^ Pershina, Valeria. “Theoretical Chemistry of the Heaviest Elements”. In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. p. 154. ISBN 9783642374661.
  5. Jump up to:a b c d Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). “Synthesis of a New Element with Atomic Number Z=117″Physical Review Letters. American Physical Society. 104 (142502). Bibcode:2010PhRvL.104n2502Odoi:10.1103/PhysRevLett.104.142502PMID 20481935.
  6. ^ Staff (30 November 2016). “IUPAC Announces the Names of the Elements 113, 115, 117, and 118”IUPAC. Retrieved 1 December2016.
  7. ^ St. Fleur, Nicholas (1 December 2016). “Four New Names Officially Added to the Periodic Table of Elements”New York Times. Retrieved 1 December 2016.
  8. Jump up to:a b “IUPAC Is Naming The Four New Elements Nihonium, Moscovium, Tennessine, And Oganesson”. IUPAC. 2016-06-08. Retrieved 2016-06-08.
  9. ^ Oganessian, Y.T. (2015). “Super-heavy element research”Reports on Progress in Physics78 (3): 036301. Bibcode:2015RPPh…78c6301Odoi:10.1088/0034-4885/78/3/036301. PMID 25746203.
  10. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.). “Comparing Experimental and Theoretical Quasifission Mass Angle Distributions”European Physical Journal Web of Conferences86: 00061. Bibcode:2015EPJWC..8600061Wdoi:10.1051/epjconf/20158600061ISSN 2100-014X.
  11. ^ Krämer, K. (2016). “Explainer: superheavy elements”Chemistry World. Retrieved 2020-03-15.
  12. ^ “Discovery of Elements 113 and 115”Lawrence Livermore National Laboratory. Archived from the original on 2015-09-11. Retrieved 2020-03-15.
  13. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). “Electronic Structure of the Transactinide Atoms”. In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic ChemistryJohn Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8.
  14. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). “Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe”. Physical Review C79 (2): 024608. doi:10.1103/PhysRevC.79.024608ISSN 0556-2813.
  15. ^ Münzenberg, G.Armbruster, P.; Folger, H.; et al. (1984). “The identification of element 108” (PDF)Zeitschrift für Physik A317 (2): 235–236. Bibcode:1984ZPhyA.317..235Mdoi:10.1007/BF01421260. Archived from the original (PDF) on 7 June 2015. Retrieved 20 October 2012.
  16. Jump up to:a b Subramanian, S. (2019). “Making New Elements Doesn’t Pay. Just Ask This Berkeley Scientist”Bloomberg Businessweek. Retrieved 2020-01-18.
  17. Jump up to:a b Ivanov, D. (2019). “Сверхтяжелые шаги в неизвестное”[Superheavy steps into the unknown]. N+1 (in Russian). Retrieved 2020-02-02.
  18. ^ Hinde, D. (2014). “Something new and superheavy at the periodic table”The Conversation. Retrieved 2020-01-30.
  19. Jump up to:a b Krása, A. (2010). “Neutron Sources for ADS” (PDF)Czech Technical University in Prague. pp. 4–8. Retrieved October 20, 2019.
  20. ^ Wapstra, A. H. (1991). “Criteria that must be satisfied for the discovery of a new chemical element to be recognized” (PDF)Pure and Applied Chemistry63 (6): 883. doi:10.1351/pac199163060879ISSN 1365-3075. Retrieved 2020-08-28.
  21. Jump up to:a b Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). “A History and Analysis of the Discovery of Elements 104 and 105”Radiochimica Acta42 (2): 67–68. doi:10.1524/ract.1987.42.2.57ISSN 2193-3405.
  22. Jump up to:a b c Chemistry World (2016). “How to Make Superheavy Elements and Finish the Periodic Table [Video]”Scientific American. Retrieved 2020-01-27.
  23. ^ Hoffman 2000, p. 334.
  24. ^ Hoffman 2000, p. 335.
  25. ^ Zagrebaev 2013, p. 3.
  26. ^ Beiser 2003, p. 432.
  27. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). “Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory”. Physical Review C87 (2): 024320–1. arXiv:1208.1215Bibcode:2013PhRvC..87b4320Sdoi:10.1103/physrevc.87.024320ISSN 0556-2813.
  28. ^ Audi 2017, pp. 030001-128–030001-138.
  29. ^ Beiser 2003, p. 439.
  30. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). “A beachhead on the island of stability”Physics Today68 (8): 32–38. Bibcode:2015PhT….68h..32Odoi:10.1063/PT.3.2880ISSN 0031-9228OSTI 1337838.
  31. ^ Grant, A. (2018). “Weighing the heaviest elements”. Physics Todaydoi:10.1063/PT.6.1.20181113a.
  32. ^ Howes, L. (2019). “Exploring the superheavy elements at the end of the periodic table”Chemical & Engineering News. Retrieved 2020-01-27.
  33. Jump up to:a b Robinson, A. E. (2019). “The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War”Distillations. Retrieved 2020-02-22.
  34. ^ “Популярная библиотека химических элементов. Сиборгий (экавольфрам)” [Popular library of chemical elements. Seaborgium (eka-tungsten)]. (in Russian). Retrieved 2020-01-07. Reprinted from “Экавольфрам” [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond] (in Russian). Nauka. 1977.
  35. ^ “Nobelium – Element information, properties and uses | Periodic Table”Royal Society of Chemistry. Retrieved 2020-03-01.
  36. Jump up to:a b Kragh 2018, pp. 38–39.
  37. ^ Kragh 2018, p. 40.
  38. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993). “Responses on the report ‘Discovery of the Transfermium elements’ followed by reply to the responses by Transfermium Working Group”(PDF)Pure and Applied Chemistry65 (8): 1815–1824. doi:10.1351/pac199365081815Archived (PDF) from the original on 25 November 2013. Retrieved 7 September 2016.
  39. ^ Commission on Nomenclature of Inorganic Chemistry (1997). “Names and symbols of transfermium elements (IUPAC Recommendations 1997)” (PDF)Pure and Applied Chemistry69 (12): 2471–2474. doi:10.1351/pac199769122471.
  40. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; et al. (2004). “Experiments on the synthesis of element 115 in the reaction243Am(48Ca,xn)291−x115″ (PDF)Physical Review C69 (2): 021601. Bibcode:2004PhRvC..69b1601Odoi:10.1103/PhysRevC.69.021601.
  41. ^ Oganessian; et al. (2003). “Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291−x115″ (PDF)JINR Preprints.
  42. Jump up to:a b c “Results of the experiment on chemical identification of Db as a decay product of element 115”, Oganessian et al., JINR preprints, 2004. Retrieved on 3 March 2008
  43. ^ Oganessian, Yu. Ts.; Utyonkov, V.; Dmitriev, S.; Lobanov, Yu.; Itkis, M.; Polyakov, A.; Tsyganov, Yu.; Mezentsev, A.; Yeremin, A.; Voinov, A. A.; et al. (2005). “Synthesis of elements 115 and 113 in the reaction 243Am +48Ca”Physical Review C72 (3): 034611. Bibcode:2005PhRvC..72c4611Odoi:10.1103/PhysRevC.72.034611.
  44. Jump up to:a b c Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). “Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)”Pure Appl. Chem83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  45. ^ “Study of heavy and superheavy nuclei (see project 1.5)”Flerov Laboratory of Nuclear Reactions.
  46. ^ “FLNR Scientific Programme: Year 2017” JINR. 2017. Retrieved 21 September 2017.
  47. ^ Nuclear Physics European Collaboration Committee (2017). “NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics” (PDF) European Science Foundation. Retrieved 9 January 2018The new building is ready for installation of the DC-280 cyclotron, the commissioning and testing of the accelerator are ongoing, and the first experiments should begin in 2018. … The synthesis of isotopes of element Z=115 in the 48Ca+243Am reactions was chosen as the first-day full-scale experiment. During this experiment, the performances of all the systems of the new accelerator and gas-filled separator (GFS-2) will be tested. … To get access to superheavy nuclides with Z>118 and carry out a detailed study on their properties, a sufficient increase in the beam intensity and the development of separators that provide the necessary background suppression are needed. This is the main goal of the construction of a first-ever SHE Factory.
  48. ^ “Existence of new element confirmed”. Lund University. 27 August 2013. Retrieved 10 April 2016.
  49. ^ “Spectroscopy of element 115 decay chains (Accepted for publication on Physical Review Letters on 9 August 2013)”. Retrieved 2 September 2013.
  50. Jump up to:a b Karol, Paul J.; Barber, Robert C.; Sherrill, Bradley M.; Vardaci, Emanuele; Yamazaki, Toshimitsu (22 December 2015). “Discovery of the elements with atomic numbers Z = 113, 115 and 117 (IUPAC Technical Report)” (PDF)Pure Appl. Chem88 (1–2): 139–153. doi:10.1515/pac-2015-0502S2CID 101634372. Retrieved 2 April2016.
  51. ^ Gates, J. M; Gregorich, K. E; Gothe, O. R; Uribe, E. C; Pang, G. K; Bleuel, D. L; Block, M; Clark, R. M; Campbell, C. M; Crawford, H. L; Cromaz, M; Di Nitto, A; Düllmann, Ch. E; Esker, N. E; Fahlander, C; Fallon, P; Farjadi, R. M; Forsberg, U; Khuyagbaatar, J; Loveland, W; MacChiavelli, A. O; May, E. M; Mudder, P. R; Olive, D. T; Rice, A. C; Rissanen, J; Rudolph, D; Sarmiento, L. G; Shusterman, J. A; et al. (2015). “Decay spectroscopy of element 115 daughters: 280Rg→276Mt and 276Mt→Bh” (PDF)Physical Review C92 (2): 021301. Bibcode:2015PhRvC..92b1301Gdoi:10.1103/PhysRevC.92.021301.
  52. ^ Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118. IUPAC (2015-12-30)
  53. ^ Forsberg, U.; Rudolph, D.; Fahlander, C.; Golubev, P.; Sarmiento, L. G.; Åberg, S.; Block, M.; Düllmann, Ch. E.; Heßberger, F. P.; Kratz, J. V.; Yakushev, A. (9 July 2016). “A new assessment of the alleged link between element 115 and element 117 decay chains” (PDF)Physics Letters B760 (2016): 293–6. Bibcode:2016PhLB..760..293Fdoi:10.1016/j.physletb.2016.07.008. Retrieved 2 April 2016.
  54. ^ Forsberg, Ulrika; Fahlander, Claes; Rudolph, Dirk (2016). Congruence of decay chains of elements 113, 115, and 117 (PDF). Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. doi:10.1051/epjconf/201613102003.
  55. ^ Zlokazov, V. B.; Utyonkov, V. K. (8 June 2017). “Analysis of decay chains of superheavy nuclei produced in the 249Bk+48Ca and243Am+48Ca reactions”Journal of Physics G: Nuclear and Particle Physics44 (75107): 075107. Bibcode:2017JPhG…44g5107Zdoi:10.1088/1361-6471/aa7293.
  56. ^ Chatt, J. (1979). “Recommendations for the Naming of Elements of Atomic Numbers Greater than 100”. Pure Appl. Chem51 (2): 381–384. doi:10.1351/pac197951020381.
  57. ^ “IUPAC – International Union of Pure and Applied Chemistry: Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118”. 2015-12-30.
  58. ^ Koppenol, W. H. (2002). “Naming of new elements (IUPAC Recommendations 2002)” (PDF)Pure and Applied Chemistry74 (5): 787. doi:10.1351/pac200274050787S2CID 95859397.
  59. ^ “115-ый элемент Унунпентиум может появиться в таблице Менделеева” (in Russian). 28 August 2013. Retrieved 23 September 2015В свою очередь, российские физики предлагают свой вариант – ланжевений (Ln) в честь известного французского физика-теоретика прошлого столетия Ланжевена.
  60. ^ Fedorova, Vera (30 March 2011). “Весенняя сессия Комитета полномочных представителей ОИЯИ”JINR (in Russian). Joint Institute for Nuclear Research. Retrieved 22 September 2015.
  61. ^ Zavyalova, Victoria (25 August 2015). “Element 115, in Moscow’s name”Russia & India Report. Retrieved 22 September 2015.
  62. ^ Fedorova, Vera (3 March 2017). “At the inauguration ceremony of the new elements of the Periodic table of D.I. Mendeleev”jinr.ruJoint Institute for Nuclear Research. Retrieved 4 February 2018.
  63. Jump up to:a b c d e f Zagrebaev, Valeriy; Karpov, Alexander; Greiner, Walter (2013). “Future of superheavy element research: Which nuclei could be synthesized within the next few years?” (PDF)Journal of Physics: Conference Series420. IOP Science. pp. 1–15. Retrieved 20 August2013.
  64. ^ Considine, Glenn D.; Kulik, Peter H. (2002). Van Nostrand’s scientific encyclopedia (9th ed.). Wiley-Interscience. ISBN 978-0-471-33230-5OCLC 223349096.
  65. Jump up to:a b Zagrebaev, V.; Greiner, W. (2008). “Synthesis of superheavy nuclei: A search for new production reactions”. Physical Review C78 (3): 034610. arXiv:0807.2537Bibcode:2008PhRvC..78c4610Zdoi:10.1103/PhysRevC.78.034610.
  66. ^ “JINR Annual Reports 2000–2006”JINR. Retrieved 2013-08-27.
  67. Jump up to:a b c Thayer, John S. (2010). “Relativistic Effects and the Chemistry of the Heavier Main Group Elements”. Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10. Springer. pp. 63–67, 83. doi:10.1007/978-1-4020-9975-5_2ISBN 978-1-4020-9974-8.
  68. ^ Faegri, K.; Saue, T. (2001). “Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding”. Journal of Chemical Physics115 (6): 2456. Bibcode:2001JChPh.115.2456Fdoi:10.1063/1.1385366.
  69. ^ Zaitsevskii, A.; van Wüllen, C.; Rusakov, A.; Titov, A. (September 2007). “Relativistic DFT and ab initio calculations on the seventh-row superheavy elements: E113 – E114” (PDF) Retrieved 17 February 2018.
  70. ^ Keller, O. L., Jr.; C. W. Nestor, Jr. (1974). “Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth” (PDF)Journal of Physical Chemistry78 (19): 1945. doi:10.1021/j100612a015.
  71. ^ Santiago, Régis T.; Haiduke, Roberto L. A. (9 March 2020). “Determination of molecular properties for moscovium halides (McF and McCl)”. Theoretical Chemistry Accounts139 (60): 1–4. doi:10.1007/s00214-020-2573-4S2CID 212629735.
  72. ^ Santiago, Régis T.; Haiduke, Roberto L. A. (2018). “Relativistic effects on inversion barriers of pyramidal group 15 hydrides”. International Journal of Quantum Chemistry118 (14): e25585. doi:10.1002/qua.25585.
  73. ^ Alvarez-Thon, Luis; Inostroza-Pino, Natalia (2018). “Spin–Orbit Effects on Magnetically Induced Current Densities in the M
     (M = N, P, As, Sb, Bi, Mc) Clusters”. Journal of Computational Chemistry2018 (14): 862–868. doi:10.1002/jcc.25170PMID 29396895.
  74. ^ Düllmann, Christoph E. (2012). “Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry”. Radiochimica Acta100 (2): 67–74. doi:10.1524/ract.2011.1842S2CID 100778491.
  75. Jump up to:a b c d Eichler, Robert (2013). “First foot prints of chemistry on the shore of the Island of Superheavy Elements”. Journal of Physics: Conference Series. IOP Science. 420 (1): 012003. arXiv:1212.4292Bibcode:2013JPhCS.420a2003Edoi:10.1088/1742-6596/420/1/012003S2CID 55653705.
  76. ^ Moody, Ken (2013-11-30). “Synthesis of Superheavy Elements”. In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. pp. 24–8. ISBN 9783642374661.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Modifications of the text are also licensed under this agreement.