Higgs boson subparticle

The Higgs boson, named after physicist Peter Higgs, is created by the quantum excitation of the Higgs field. In 1964 Higgs et al had suggested this answered fundamental questions as to why particles have mass. It was actually verified in 2012. Experimental evidence conducted at the LHC confirmed the expected properties of a Higgs boson. In 2013, Higgs and François Englert, were awarded the Nobel Prize in Physics. More recently, the media have coined the phrase the “God particle”. 




How was the Higgs boson discovered?


The Standard Model

Our knowledge around the origins of forces between elementary particles, begins with the Standard Model. This model, excluding gravity, rationalises multiple ideas in physics. The fundamental forces in nature arise from properties called gauge invariance and symmetries. 

This model includes a field required to break electroweak symmetry and give particles their correct mass. The Higgs Field (a scalar field) with a non-zero constant valuebreaks certain symmetry laws, facilitating the Higgs mechanism.

Proving the Higgs field existed was attempted by the detection of excitations, the manifestation of the particle. The energy needed to produce these particles is extremely high and therefore detection was still many decades away. CERN, home of the Large Hadron Collider, is the world’s most complex and powerful particle accelerator. The continuous evolution and upgrading of the facility eventually led to a capability able to reproduce the required conditions that facilitated the creation and detection of the Higgs boson particle, in 2012. In recent years, the particle has repeatably shown to behave in many of the ways predicted for Higgs particles and has shown even parity and zero spin.



The Higgs mechanism

In 1964, three groups of researchers independently published PRL symmetry breaking papers.  A unique aspect to the Higgs Field is that it requires less energy to have a non-zero value than a zero value.

The first search for the Higgs boson was chased at CERN in the 1990s. At the end of its service in 2000, LEP had found no conclusive evidence for the Higgs. The search also continued at Fermilab in the USA. The Tevatron was the only supercollider that was operational since the LHC was still under construction. The Tevatron was only able to exclude further ranges for the Higgs mass, and was closed down in September 2011. 

The Large Hadron Collider in Switzerland, a circular 27km underground tunnel, designed to collide two beams of protons. Tests were delayed, by a magnet quench, caused by a faulty electrical connection destroying over 50 superconducting magnets.

Research testing finally commenced again in March 2010 and the two main particle detectors at the LHC, ATLAS and CMS, had narrowed down the mass range where the Higgs could exist. Later in 2011, both experiments had resulted in the slow emergence of a small excess of gamma and 4-lepton decay signatures. The narrowing of the possible Higgs range to around 115–130 GeV and the observation of small event excesses across multiple channels were made public knowledge. In 2012 data eventually confirmed the finding of a Higgs boson, when their collision data had been examined.


Why is the Higgs boson called the God particle?

The Higgs boson carries the nickname, the God particle in areas of the media. The nickname comes from the title of the 1993 book on the Higgs boson and particle physics, The God Particle: If the Universe Is the Answer, What Is the Question? by Physics Nobel Prize winner Leon Lederman. The book aimed to promote awareness of the shutting down of the US project. Lederman, a leading researcher in the field, writes that he wanted to title his book The Goddamn Particle: If the Universe is the Answer, What is the Question? Lederman’s editor decided that the title was too controversial and convinced him to change the title to The God Particle: If the Universe is the Answer, What is the Question?

Lederman begins with a review of the long human search for knowledge, and explains that his tongue-in-cheek title draws an analogy between the impact of the Higgs field on the fundamental symmetries at the Big Bang, and the apparent chaos of structures, particles, forces and interactions that resulted and shaped our present universe.


Elementary particles – Quarks, Leptons and Fermions


Leptons’ antiparticles are the antileptons, having the opposite electric charge and lepton number. The antiparticle of an electron is positron. There are three charged leptons are called electron-like leptons, while the neutral leptons are called neutrinos which oscillate, so that neutrinos do not have definite mass. They are in a state of superposition called an eigenstate. There is also a sterile neutrino.



Fermions, like bosons, are a fundamental class of particle. They are described by Fermi–Dirac statistics and have quantum numbers described by the Pauli exclusion principle. They include the quarks and leptons. Fermions have half-integer spin of ​12  and are also Dirac fermions, have their own antiparticle. They are classified according to whether they interact via the strong interaction or not. In the Standard Model, there are six quarks and six leptons.



Quarks are the fundamental constituents of hadrons. Their antiparticles are the antiquarks, which are identical except that they carry the opposite charge, colour charge, and baryon number. There are three positively charged quarks are called up-type quarks and the three negatively charged quarks are called down-type quarks.


Why is Higgs boson so important?

The Higgs boson validates the Standard Model. If the Higgs field had not been discovered, the Standard Model would have needed to be superseded. The Higgs discovery including the continued experimentation and data provided by the LHC, allow physicists to search for any evidence that the Standard Model seems to fail, and could guide researchers into future theoretical developments.

Symmetry breaking of the electroweak interaction

Electroweak symmetry breaking causes the electroweak interaction to manifest in part as the short-ranged weak force. Electroweak symmetry breaking is believed to have happened shortly after the big bang, when the universe was at a temperature 159.5±1.5 GeV. This symmetry breaking is required for atoms and other structures to form, as well as for nuclear reactions in stars. The Higgs field is responsible for this.

Particle mass acquisition

The Higgs field generates the masses of quarks and charged leptons (through Yukawa coupling) and the W and Z gauge bosons (the Higgs mechanism). In Higgs-based theories, the property of “mass” is a manifestation of potential energy transferred to fundamental particles when they interact with the Higgs field, which had contained that mass in the form of energy.

Scalar fields and extension of the Standard Model

The Higgs field is the only scalar (spin 0) field to be detected; all the other fields in the Standard Model are spin ½ fermions or spin 1 bosons. The Higgs boson’s discovery, this existence proof of a scalar field, is almost as important as the Higgs’s role in determining the mass of other particles.

Properties of the Higgs boson particle

The Higgs particle is a massive scalar boson with zero spin, no electric charge, and no colour charge. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. In its ground state, this causes the field to have a nonzero value everywhere. This results in, below a very high energy, it breaking the isospin symmetry of the electroweak interaction. Three components of the Higgs field are absorbed by the SU(2) and U(1) gauge bosons to become the longitudinal components of the W and Z bosons. The remaining electrically neutral component either manifests as a Higgs particle, or may couple separately to other particles known as fermions.

Experimental findings after 2013

In July 2017, CERN confirmed that all measurements still agree with the predictions of the Standard Model. Experimental evidence of the predicted direct decay into fermions, such as pairs of bottom quarks, was a milestone in confirming its short life and decay into pairs of tau leptons. This was of paramount importance to establish the coupling of the Higgs boson to leptons and is a crucial step in measuring its couplings to third generation fermions. In July 2018, the ATLAS and CMS experiments observed the Higgs boson decay into a pair of bottom quarks, which makes up approximately 60% of all of its decays.


Recent category posts


  1.  “LHC experiments delve deeper into precision”Media and Press relations (Press release). CERN. 11 July 2017. Retrieved 23 July2017.
  2. ^ M. Tanabashi et al. (Particle Data Group) (2018). “Review of Particle Physics”Physical Review D98 (3): 1–708. Bibcode:2018PhRvD..98c0001Tdoi:10.1103/PhysRevD.98.030001PMID 10020536.
  3. Jump up to:a b c d e f g LHC Higgs Cross Section Working Group; Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi (2012). “Handbook of LHC Higgs Cross Sections: 2. Differential Distributions”. CERN Report 2 (Tables A.1 – A.20)1201: 3084. arXiv:1201.3084Bibcode:2012arXiv1201.3084Ldoi:10.5170/CERN-2012-002S2CID 119287417.
  4. ^ ATLAS collaboration (2018). “Observation of H→bb decays and VH production with the ATLAS detector”. Physics Letters B786: 59–86. arXiv:1808.08238doi:10.1016/j.physletb.2018.09.013.
  5. ^ CMS collaboration (2018). “Observation of Higgs Boson Decay to Bottom Quarks”. Physical Review Letters121 (12): 121801. arXiv:1808.08242Bibcode:2018PhRvL.121l1801Sdoi:10.1103/PhysRevLett.121.121801PMID 30296133S2CID 118901756.
  6. Jump up to:a b c d e f g O’Luanaigh, C. (14 March 2013). “New results indicate that new particle is a Higgs boson”. CERN. Retrieved 9 October 2013.
  7. Jump up to:a b c d e CMS Collaboration (2017). “Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state”. Physics Letters B775 (2017): 1–24. arXiv:1707.00541Bibcode:2017PhLB..775….1Sdoi:10.1016/j.physletb.2017.10.021S2CID 3221363.
  8. Jump up to:a b c Onyisi, P. (23 October 2012). “Higgs boson FAQ”University of Texas ATLAS group. Retrieved 8 January 2013.
  9. Jump up to:a b c d Strassler, M. (12 October 2012). “The Higgs FAQ 2.0”ProfMattStrassler.com. Retrieved 8 January 2013[Q] Why do particle physicists care so much about the Higgs particle?
    [A] Well, actually, they don’t. What they really care about is the Higgs field, because it is so important. [emphasis in original]
  10. ^ Hill, Christopher T.Lederman, Leon M. (2013). Beyond the God Particle. Prometheus Books. ISBN 978-1-6161-4801-0.
  11. Jump up to:a b c Sample, Ian (29 May 2009). “Anything but the God particle”The Guardian. Retrieved 24 June 2009.
  12. Jump up to:a b Evans, R. (14 December 2011). “The Higgs boson: Why scientists hate that you call it the ‘God particleNational Post. Retrieved 3 November 2013.
  13. ^ Griffiths 2008, pp. 49–52
  14. ^ Tipler & Llewellyn 2003, pp. 603–604
  15. ^ Griffiths 2008, pp. 372–373
  16. ^ Shu, F. H. (1982). The Physical Universe: An Introduction to AstronomyUniversity Science Books. pp. 107–108. ISBN 978-0-935702-05-7.
  17. Jump up to:a b c Leon M. Lederman; Dick Teresi (1993). The God Particle: If the Universe is the Answer, What is the Question. Houghton Mifflin Company.
  18. Jump up to:a b José Luis Lucio; Arnulfo Zepeda (1987). Proceedings of the II Mexican School of Particles and Fields, Cuernavaca-Morelos, 1986. World Scientific. p. 29. ISBN 978-9971504342.
  19. Jump up to:a b Gunion; Dawson; Kane; Haber (1990). The Higgs Hunter’s Guide(1st ed.). p. 11. ISBN 978-0-2015-0935-9. Cited by Peter Higgs in his talk “My Life as a Boson”, 2001, ref#25.
  20. ^ Strassler, M. (8 October 2011). “The Known Particles – If The Higgs Field Were Zero”ProfMattStrassler.com. Retrieved 13 November2012The Higgs field: so important it merited an entire experimental facility, the Large Hadron Collider, dedicated to understanding it.
  21. Jump up to:a b c Biever, C. (6 July 2012). “It’s a boson! But we need to know if it’s the Higgs”New Scientist. Retrieved 9 January 2013‘As a layman, I would say, I think we have it,’ said Rolf-Dieter Heuer, director general of CERN at Wednesday’s seminar announcing the results of the search for the Higgs boson. But when pressed by journalists afterwards on what exactly ‘it’ was, things got more complicated. ‘We have discovered a boson – now we have to find out what boson it is’
    Q: ‘If we don’t know the new particle is a Higgs, what do we know about it?’ We know it is some kind of boson, says Vivek Sharma of CMS […]
    Q: ‘are the CERN scientists just being too cautious? What would be enough evidence to call it a Higgs boson?’ As there could be many different kinds of Higgs bosons, there’s no straight answer.
    [emphasis in original]
  22. ^ Siegfried, T. (20 July 2012). “Higgs Hysteria”Science News. Retrieved 9 December 2012In terms usually reserved for athletic achievements, news reports described the finding as a monumental milestone in the history of science.
  23. Jump up to:a b c Del Rosso, A. (19 November 2012). “Higgs: The beginning of the exploration”CERN. Retrieved 9 January 2013Even in the most specialized circles, the new particle discovered in July is not yet being called the “Higgs boson”. Physicists still hesitate to call it that before they have determined that its properties fit with those the Higgs theory predicts the Higgs boson has.
  24. Jump up to:a b Naik, G. (14 March 2013). “New Data Boosts Case for Higgs Boson Find”The Wall Street Journal. Retrieved 15 March 2013‘We’ve never seen an elementary particle with spin zero,’ said Tony Weidberg, a particle physicist at the University of Oxford who is also involved in the CERN experiments.
  25. ^ Heilprin, J. (14 March 2013). “Higgs Boson Discovery Confirmed After Physicists Review Large Hadron Collider Data at CERN”The Huffington Post. Archived from the original on 17 March 2013. Retrieved 14 March 2013.
  26. ^ Demystifying the Higgs Boson with Leonard SusskindLeonard Susskind presents an explanation of what the Higgs mechanism is, and what it means to “give mass to particles.” He also explains what’s at stake for the future of physics and cosmology. 30 July 2012.
  27. ^ D’Onofrio, Michela and Rummukainen, Kari (2016). “Standard model cross-over on the lattice”. Phys. RevD93 (2): 025003. arXiv:1508.07161Bibcode:2016PhRvD..93b5003Ddoi:10.1103/PhysRevD.93.025003S2CID 119261776.
  28. ^ Rao, Achintya (2 July 2012). “Why would I care about the Higgs boson?”CMS Public Website. CERN. Retrieved 18 July 2012.
  29. ^ Jammer, Max (2000). Concepts of Mass in Contemporary Physics and Philosophy. Princeton, NJ: Princeton University Press. pp. 162–163., who provides many references in support of this statement.
  30. ^ Dvorsky, George (2013). “Is there a link between the Higgs boson and dark energy?”io9. Retrieved 1 March 2018.
  31. ^ “What Universe Is This, Anyway?”NPR.org. 2014. Retrieved 1 March 2018.
  32. Jump up to:a b c d Alekhin, S.; Djouadi, A.; Moch, S. (13 August 2012). “The top quark and Higgs boson masses and the stability of the electroweak vacuum”. Physics Letters B716 (1): 214–219. arXiv:1207.0980Bibcode:2012PhLB..716..214Adoi:10.1016/j.physletb.2012.08.024S2CID 28216028.
  33. ^ Turner, M.S.; Wilczek, F. (1982). “Is our vacuum metastable?”. Nature298 (5875): 633–634. Bibcode:1982Natur.298..633Tdoi:10.1038/298633a0S2CID 4274444.
  34. ^ Coleman, S.; de Luccia, F. (1980). “Gravitational effects on and of vacuum decay”. Physical ReviewD21 (12): 3305–3315. Bibcode:1980PhRvD..21.3305Cdoi:10.1103/PhysRevD.21.3305OSTI 1445512.
  35. ^ Stone, M. (1976). “Lifetime and decay of excited vacuum states”. Phys. Rev. D14 (12): 3568–3573. Bibcode:1976PhRvD..14.3568Sdoi:10.1103/PhysRevD.14.3568.
  36. ^ Frampton, P.H. (1976). “Vacuum Instability and Higgs Scalar Mass”. Physical Review Letters37 (21): 1378–1380. Bibcode:1976PhRvL..37.1378Fdoi:10.1103/PhysRevLett.37.1378.
  37. ^ Frampton, P.H. (1977). “Consequences of Vacuum Instability in Quantum Field Theory”. Phys. Rev. D15 (10): 2922–2928. Bibcode:1977PhRvD..15.2922Fdoi:10.1103/PhysRevD.15.2922.
  38. ^ Klotz, Irene (18 February 2013). Adams, David; Eastham, Todd (eds.). “Universe has finite lifespan, Higgs boson calculations suggest”Huffington Post. Reuters. Retrieved 21 February 2013Earth will likely be long gone before any Higgs boson particles set off an apocalyptic assault on the universe
  39. ^ Hoffman, Mark (19 February 2013). “Higgs boson will destroy the universe, eventually”Science World Report. Retrieved 21 February2013.
  40. ^ Ellis, J.; Espinosa, J.R.; Giudice, G.F.; Hoecker, A.; Riotto, A. (2009). “The Probable Fate of the Standard Model”. Physics Letters B679 (4): 369–375. arXiv:0906.0954Bibcode:2009PhLB..679..369Edoi:10.1016/j.physletb.2009.07.054S2CID 17422678.
  41. ^ Masina, Isabella (12 February 2013). “Higgs boson and top quark masses as tests of electroweak vacuum stability”. Phys. Rev. D87 (5): 53001. arXiv:1209.0393Bibcode:2013PhRvD..87e3001Mdoi:10.1103/PhysRevD.87.053001S2CID 118451972.
  42. ^ Buttazzo, Dario; Degrassi, Giuseppe; Giardino, Pier Paolo; Giudice, Gian F.; Sala, Filippo; Salvio, Alberto; Strumia, Alessandro (2013). “Investigating the near-criticality of the Higgs boson”JHEP2013 (12): 089. arXiv:1307.3536Bibcode:2013JHEP…12..089Bdoi:10.1007/JHEP12(2013)089S2CID 54021743.
  43. ^ Salvio, Alberto (9 April 2015). “A simple, motivated completion of the Standard Model below the Planck scale: Axions and right-handed neutrinos”. Physics Letters B743: 428–434. arXiv:1501.03781Bibcode:2015PhLB..743..428Sdoi:10.1016/j.physletb.2015.03.015S2CID 119279576.
  44. Jump up to:a b c Boyle, Alan (19 February 2013). “Will our universe end in a ‘big slurp’? Higgs-like particle suggests it might”NBC News’ Cosmic blog. Retrieved 21 February 2013[T]he bad news is that its mass suggests the universe will end in a fast-spreading bubble of doom. The good news? It’ll probably be tens of billions of years. The article quotes Fermilab‘s Joseph Lykken: “[T]he parameters for our universe, including the Higgs [and top quark’s masses] suggest that we’re just at the edge of stability, in a “metastable” state. Physicists have been contemplating such a possibility for more than 30 years. Back in 1982, physicists Michael Turner and Frank Wilczek wrote in Nature that “without warning, a bubble of true vacuum could nucleate somewhere in the universe and move outwards …”
  45. ^ Peralta, Eyder (19 February 2013). “If Higgs boson calculations are right, a catastrophic ‘bubble’ could end universe”The Two-Way. NPR News. Retrieved 21 February 2013. Article cites Fermilab‘s Joseph Lykken: “The bubble forms through an unlikely quantum fluctuation, at a random time and place,” Lykken tells us. “So in principle it could happen tomorrow, but then most likely in a very distant galaxy, so we are still safe for billions of years before it gets to us.”
  46. ^ Bezrukov, F.; Shaposhnikov, M. (24 January 2008). “The Standard Model Higgs boson as the inflaton”. Physics Letters B659 (3): 703–706. arXiv:0710.3755Bibcode:2008PhLB..659..703Bdoi:10.1016/j.physletb.2007.11.072S2CID 14818281.
  47. ^ Salvio, Alberto (9 August 2013). “Higgs Inflation at NNLO after the Boson Discovery”Physics Letters B727 (1–3): 234–239. arXiv:1308.2244Bibcode:2013PhLB..727..234Sdoi:10.1016/j.physletb.2013.10.042S2CID 56544999.
  48. ^ Cole, K.C. (14 December 2000). “One Thing Is Perfectly Clear: Nothingness Is Perfect”Los Angeles Times. Retrieved 17 January2013[T]he Higgs’ influence (or the influence of something like it) could reach much further. For example, something like the Higgs—if not exactly the Higgs itself—may be behind many other unexplained “broken symmetries” in the universe as well … In fact, something very much like the Higgs may have been behind the collapse of the symmetry that led to the Big Bang, which created the universe. When the forces first began to separate from their primordial sameness—taking on the distinct characters they have today—they released energy in the same way as water releases energy when it turns to ice. Except in this case, the freezing packed enough energy to blow up the universe. … However it happened, the moral is clear: Only when the perfection shatters can everything else be born.
  49. ^ Sean Carroll (2012). The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World. Penguin Group US. ISBN 978-1-101-60970-5.
  50. Jump up to:a b Woit, Peter (13 November 2010). “The Anderson–Higgs Mechanism”. Dr. Peter Woit (Senior Lecturer in Mathematics Columbia University and Ph.D. particle physics). Retrieved 12 November 2012.
  51. ^ Goldstone, J.; Salam, Abdus; Weinberg, Steven (1962). “Broken Symmetries”. Physical Review127 (3): 965–970. Bibcode:1962PhRv..127..965Gdoi:10.1103/PhysRev.127.965.
  52. Jump up to:a b c Guralnik, G. S. (2011). “The Beginnings of Spontaneous Symmetry Breaking in Particle Physics”. arXiv:1110.2253 [physics.hist-ph].
  53. Jump up to:a b c d e Kibble, T.W.B. (2009). “Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism”Scholarpedia4 (1): 6441. Bibcode:2009SchpJ…4.6441Kdoi:10.4249/scholarpedia.6441.
  54. Jump up to:a b Kibble, T.W.B. (2009). “History of Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism (history)”Scholarpedia4 (1): 8741. Bibcode:2009SchpJ…4.8741Kdoi:10.4249/scholarpedia.8741.
  55. ^ “The Nobel Prize in Physics 2008”Nobelprize.org. Archived from the original on 13 January 2009.
  56. ^ List of Anderson 1958–1959 papers referencing ‘symmetry’, at APS Journals[dead link]
  57. Jump up to:a b c Higgs, Peter (24 November 2010). “My Life as a Boson” (PDF). London: Kings College. pp. 4–5. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013. – Talk given by Peter Higgs at Kings College, London, expanding on a paper originally presented in 2001. The original 2001 paper may be found in: Higgs, Peter (25 May 2001). “My Life as a Boson: The Story of ‘The Higgs. In Michael J. Duff & James T. Liu (eds.). 2001 A Spacetime Odyssey: Proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics. Ann Arbor, Michigan: World Scientific. pp. 86–88. ISBN 978-9-8123-8231-3. Retrieved 17 January 2013.
  58. ^ Anderson, P. (1963). “Plasmons, gauge invariance and mass”. Physical Review130 (1): 439–442. Bibcode:1963PhRv..130..439Adoi:10.1103/PhysRev.130.439.
  59. ^ Klein, A.; Lee, B. (1964). “Does Spontaneous Breakdown of Symmetry Imply Zero-Mass Particles?”. Physical Review Letters12 (10): 266–268. Bibcode:1964PhRvL..12..266Kdoi:10.1103/PhysRevLett.12.266.
  60. ^ Englert, FrançoisBrout, Robert (1964). “Broken Symmetry and the Mass of Gauge Vector Mesons”Physical Review Letters13 (9): 321–323. Bibcode:1964PhRvL..13..321Edoi:10.1103/PhysRevLett.13.321.
  61. Jump up to:a b c Higgs, Peter (1964). “Broken Symmetries and the Masses of Gauge Bosons”Physical Review Letters13 (16): 508–509. Bibcode:1964PhRvL..13..508Hdoi:10.1103/PhysRevLett.13.508.
  62. Jump up to:a b c Guralnik, GeraldHagen, C. R.Kibble, T. W. B. (1964). “Global Conservation Laws and Massless Particles”Physical Review Letters13 (20): 585–587. Bibcode:1964PhRvL..13..585Gdoi:10.1103/PhysRevLett.13.585.
  63. ^ Higgs, Peter (1964). “Broken symmetries, massless particles, and gauge fields”. Physics Letters12 (2): 132–133. Bibcode:1964PhL….12..132Hdoi:10.1016/0031-9163(64)91136-9.
  64. ^ Higgs, Peter (24 November 2010). “My Life as a Boson” (PDF). Talk given by Peter Higgs at Kings College, London, 24 November 2010. Archived from the original (PDF) on 4 November 2013. Retrieved 17 January 2013Gilbert … wrote a response to [Klein and Lee’s paper] saying ‘No, you cannot do that in a relativistic theory. You cannot have a preferred unit time-like vector like that.’ This is where I came in, because the next month was when I responded to Gilbert’s paper by saying ‘Yes, you can have such a thing’ but only in a gauge theory with a gauge field coupled to the current.
  65. ^ G.S. Guralnik (2011). “Gauge invariance and the Goldstone theorem – 1965 Feldafing talk”. Modern Physics Letters A26 (19): 1381–1392. arXiv:1107.4592Bibcode:2011MPLA…26.1381Gdoi:10.1142/S0217732311036188S2CID 118500709.
  66. ^ Higgs, Peter (1966). “Spontaneous Symmetry Breakdown without Massless Bosons”Physical Review145 (4): 1156–1163. Bibcode:1966PhRv..145.1156Hdoi:10.1103/PhysRev.145.1156.
  67. ^ Kibble, Tom (1967). “Symmetry Breaking in Non-Abelian Gauge Theories”. Physical Review155 (5): 1554–1561. Bibcode:1967PhRv..155.1554Kdoi:10.1103/PhysRev.155.1554.
  68. ^ “Guralnik, G S; Hagen, C R and Kibble, T W B (1967). Broken Symmetries and the Goldstone Theorem. Advances in Physics, vol. 2”(PDF). Archived from the original (PDF) on 24 September 2015. Retrieved 16 September 2014.
  69. Jump up to:a b “Physical Review Letters – 50th Anniversary Milestone Papers”Physical Review Letters.
  70. ^ S. Weinberg (1967). “A Model of Leptons”. Physical Review Letters19(21): 1264–1266. Bibcode:1967PhRvL..19.1264Wdoi:10.1103/PhysRevLett.19.1264.
  71. ^ A. Salam (1968). N. Svartholm (ed.). Elementary Particle Physics: Relativistic Groups and Analyticity. Eighth Nobel Symposium. Stockholm: Almquvist and Wiksell. p. 367.
  72. ^ S.L. Glashow (1961). “Partial-symmetries of weak interactions”. Nuclear Physics22 (4): 579–588. Bibcode:1961NucPh..22..579Gdoi:10.1016/0029-5582(61)90469-2.
  73. Jump up to:a b c Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V. (2012). “A Historical Profile of the Higgs Boson”. arXiv:1201.6045 [hep-ph].
  74. ^ Martin Veltman (8 December 1999). “From Weak Interactions to Gravitation” (PDF)The Nobel Prize. p. 391. Archived from the original (PDF) on 25 July 2018. Retrieved 9 October 2013.
  75. Jump up to:a b c d e f >Politzer, David (8 December 2004). “The Dilemma of Attribution”The Nobel Prize. Retrieved 22 January 2013Sidney Coleman published in Science magazine in 1979 a citation search he did documenting that essentially no one paid any attention to Weinberg’s Nobel Prize winning paper until the work of ’t Hooft (as explicated by Ben Lee). In 1971 interest in Weinberg’s paper exploded. I had a parallel personal experience: I took a one-year course on weak interactions from Shelly Glashow in 1970, and he never even mentioned the Weinberg–Salam model or his own contributions.
  76. ^ Coleman, Sidney (14 December 1979). “The 1979 Nobel Prize in Physics”. Science206 (4424): 1290–1292. Bibcode:1979Sci…206.1290Cdoi:10.1126/science.206.4424.1290PMID 17799637.
  77. Jump up to:a b Letters from the Past – A PRL Retrospective (50 year celebration, 2008)
  78. ^ Bernstein 1974, p. 9
  79. ^ Bernstein 1974, pp. 9, 36 (footnote), 43–44, 47
  80. Jump up to:a b American Physical Society – “J. J. Sakurai Prize for Theoretical Particle Physics”.
  81. ^ Merali, Zeeya (4 August 2010). “Physicists get political over Higgs”Naturedoi:10.1038/news.2010.390. Retrieved 28 December 2011.
  82. Jump up to:a b c d e f g h i Close, Frank (2011). The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe. Oxford: Oxford University Press. ISBN 978-0-19-959350-7.
  83. Jump up to:a b G.S. Guralnik (2009). “The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles”. International Journal of Modern Physics A24 (14): 2601–2627. arXiv:0907.3466Bibcode:2009IJMPA..24.2601Gdoi:10.1142/S0217751X09045431S2CID 16298371.
  84. Jump up to:a b c d e f Baglio, Julien; Djouadi, Abdelhak (2011). “Higgs production at the lHC”. Journal of High Energy Physics1103 (3): 055. arXiv:1012.0530Bibcode:2011JHEP…03..055Bdoi:10.1007/JHEP03(2011)055S2CID 119295294.
  85. ^ “Collisions”LHC Machine Outreach. CERN. Retrieved 26 July 2012.
  86. Jump up to:a b c “Hunt for Higgs boson hits key decision point”. NBC News. 6 December 2012. Retrieved 19 January 2013.
  87. ^ “Welcome to the Worldwide LHC Computing Grid”WLCG – Worldwide LHC Computing Grid. CERN. Retrieved 14 November 2012[A] global collaboration of more than 170 computing centres in 36 countries … to store, distribute and analyse the ~25 Petabytes (25 million Gigabytes) of data annually generated by the Large Hadron Collider
  88. ^ “The Worldwide LHC Computing Grid”The Worldwide LHC Computing Grid. CERN. November 2017. It now links thousands of computers and storage systems in over 170 centres across 41 countries. … The WLCG is the world’s largest computing grid
  89. ^ W.-M. Yao; et al. (2006). “Review of Particle Physics” (PDF)Journal of Physics G33 (1): 1–1232. arXiv:astro-ph/0601168Bibcode:2006JPhG…33….1Ydoi:10.1088/0954-3899/33/1/001.
  90. ^ The CDF Collaboration; The D0 Collaboration; The Tevatron New Physics, Higgs Working Group (2012). “Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb−1 of Data”. arXiv:1207.0449 [hep-ex].
  91. ^ “Interim Summary Report on the Analysis of the 19 September 2008 Incident at the LHC” (PDF). CERN. 15 October 2008. EDMS 973073. Retrieved 28 September 2009.
  92. ^ “CERN releases analysis of LHC incident”Media and Press relations (Press release). CERN. 16 October 2008. Retrieved 12 November 2016.
  93. ^ “LHC to restart in 2009”Media and Press relations (Press release). CERN. 5 December 2008. Retrieved 12 November 2016.
  94. ^ “LHC progress report”CERN Bulletin (18). 3 May 2010. Retrieved 7 December 2011.
  95. ^ “ATLAS experiment presents latest Higgs search status”ATLAS homepage. CERN. 13 December 2011. Retrieved 13 December 2011.
  96. ^ Taylor, Lucas (13 December 2011). “CMS search for the Standard Model Higgs Boson in LHC data from 2010 and 2011”CMS public website. CERN. Retrieved 13 December 2011.
  97. Jump up to:a b c d e Overbye, D. (5 March 2013). “Chasing The Higgs Boson”The New York Times. Retrieved 5 March 2013.
  98. Jump up to:a b “ATLAS and CMS experiments present Higgs search status”(Press release). CERN Press Office. 13 December 2011. Retrieved 14 September 2012the statistical significance is not large enough to say anything conclusive. As of today what we see is consistent either with a background fluctuation or with the presence of the boson. Refined analyses and additional data delivered in 2012 by this magnificent machine will definitely give an answer
  99. ^ “Welcome”WLCG – Worldwide LHC Computing Grid. CERN. Archived from the original on 10 November 2012. Retrieved 29 October2012.
  100. ^ CMS collaboration (2015). “Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV”The European Physical Journal C75 (5): 212. arXiv:1412.8662Bibcode:2015EPJC…75..212Kdoi:10.1140/epjc/s10052-015-3351-7PMC 4433454PMID 25999783.
  101. ^ ATLAS collaboration (2015). “Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector”. Physical Review D91(1): 012006. arXiv:1408.5191Bibcode:2015PhRvD..91a2006Adoi:10.1103/PhysRevD.91.012006.
  102. ^ ATLAS collaboration (2014). “Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector”. Physical Review D90 (11): 112015. arXiv:1408.7084Bibcode:2014PhRvD..90k2015Adoi:10.1103/PhysRevD.90.112015.
  103. ^ “Press Conference: Update on the search for the Higgs boson at CERN on 4 July 2012”. Indico.cern.ch. 22 June 2012. Retrieved 4 July 2012.
  104. ^ “CERN to give update on Higgs search as curtain raiser to ICHEP conference”Media and Press relations (Press release). CERN. 22 June 2012. Retrieved 12 November 2016.
  105. ^ “Scientists analyse global Twitter gossip around Higgs boson discovery”Phys.org. 23 January 2013. Retrieved 6 February 2013For the first time scientists have been able to analyse the dynamics of social media on a global scale before, during and after the announcement of a major scientific discovery.
    De Domenico, M.; Lima, A.; Mougel, P.; Musolesi, M. (2013). “The Anatomy of a Scientific Gossip”Scientific Reports3 (2013): 2980. arXiv:1301.2952Bibcode:2013NatSR…3E2980Ddoi:10.1038/srep02980PMC 3798885PMID 24135961.
  106. ^ “Higgs boson particle results could be a quantum leap”. Times LIVE. 28 June 2012. Retrieved 4 July 2012.
  107. ^ CERN prepares to deliver Higgs particle findings, Australian Broadcasting Corporation. Retrieved 4 July 2012.
  108. ^ “God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It’s Named After”. Huffingtonpost.co.uk. Retrieved 19 January 2013.
  109. ^ Our Bureau (4 July 2012). “Higgs on way, theories thicken – Wait for news on God particle”The Telegraph – India. Retrieved 19 January2013.
  110. ^ Thornhill, Ted (3 July 2013). “God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It’s Named After”Huffington Post. Retrieved 23 July 2013.
  111. ^ Adrian Cho (13 July 2012). “Higgs Boson Makes Its Debut After Decades-Long Search”. Science337 (6091): 141–143. Bibcode:2012Sci…337..141Cdoi:10.1126/science.337.6091.141PMID 22798574.
  112. Jump up to:a b CMS collaboration (2012). “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. Physics Letters B716(1): 30–61. arXiv:1207.7235Bibcode:2012PhLB..716…30Cdoi:10.1016/j.physletb.2012.08.021.
  113. Jump up to:a b Taylor, Lucas (4 July 2012). “Observation of a New Particle with a Mass of 125 GeV”CMS Public Website. CERN. Retrieved 4 July2012.
  114. ^ “Latest Results from ATLAS Higgs Search”ATLAS News. CERN. 4 July 2012. Retrieved 4 July 2012.
  115. Jump up to:a b ATLAS collaboration (2012). “Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC”. Physics Letters B716 (1): 1–29. arXiv:1207.7214Bibcode:2012PhLB..716….1Adoi:10.1016/j.physletb.2012.08.020.
  116. Jump up to:a b c d e “Higgs bosons: theory and searches” (PDF)PDGLive. Particle Data Group. 12 July 2012. Retrieved 15 August 2012.
  117. ^ Gillies, James (23 July 2012). “LHC 2012 proton run extended by seven weeks”CERN Bulletin (30). Retrieved 29 August 2012.
  118. Jump up to:a b “Higgs boson behaving as expected”3 News NZ. 15 November 2012. Archived from the original on 1 May 2014. Retrieved 15 November 2012.
  119. Jump up to:a b c Strassler, Matt (14 November 2012). “Higgs Results at Kyoto”Of Particular Significance: Conversations About Science with Theoretical Physicist Matt Strassler. Prof. Matt Strassler’s personal particle physics website. Retrieved 10 January 2013ATLAS and CMS only just co-discovered this particle in July … We will not know after today whether it is a Higgs at all, whether it is a Standard Model Higgs or not, or whether any particular speculative idea…is now excluded. […] Knowledge about nature does not come easy. We discovered the top quark in 1995, and we are still learning about its properties today… we will still be learning important things about the Higgs during the coming few decades. We’ve no choice but to be patient.
  120. ^ Sample, Ian (14 November 2012). “Higgs particle looks like a bog Standard Model boson, say scientists”The Guardian. London. Retrieved 15 November 2012.
  121. ^ “CERN experiments observe particle consistent with long-sought Higgs boson”Media and Press relations (Press release). CERN. 4 July 2012. Retrieved 12 November 2016.
  122. ^ “Person Of The Year 2012”Time. 19 December 2012.
  123. ^ “Higgs Boson Discovery Has Been Confirmed”Forbes. Retrieved 9 October 2013.
  124. ^ Slate Video Staff (11 September 2012). “Higgs Boson Confirmed; CERN Discovery Passes Test”. Slate.com. Retrieved 9 October 2013.
  125. ^ “The Year Of The Higgs, And Other Tiny Advances In Science”. NPR. 1 January 2013. Retrieved 9 October 2013.
  126. ^ “Confirmed: the Higgs boson does exist”The Sydney Morning Herald. 4 July 2012.
  127. ^ John Heilprin (27 January 2013). “CERN chief: Higgs boson quest could wrap up by midyear”NBCNews.com. AP. Retrieved 20 February2013Rolf Heuer, director of [CERN], said he is confident that “towards the middle of the year, we will be there.” – Interview by AP, at the World Economic Forum, 26 January 2013.
  128. ^ Boyle, Alan (16 February 2013). “Will our universe end in a ‘big slurp’? Higgs-like particle suggests it might”NBCNews.com. Retrieved 20 February 2013‘it’s going to take another few years’ after the collider is restarted to confirm definitively that the newfound particle is the Higgs boson.
  129. ^ Gillies, James (6 March 2013). “A question of spin for the new boson”. CERN. Retrieved 7 March 2013.
  130. Jump up to:a b c Adam Falkowski (writing as ‘Jester’) (27 February 2013). “When shall we call it Higgs?”. Résonaances particle physics blog. Retrieved 7 March 2013.
  131. Jump up to:a b c CMS Collaboration (February 2013). “Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs”. Physical Review Letters110 (8): 081803. arXiv:1212.6639Bibcode:2013PhRvL.110h1803Cdoi:10.1103/PhysRevLett.110.081803PMID 23473131S2CID 2621524.
  132. Jump up to:a b c ATLAS Collaboration (7 October 2013). “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”. Phys. Lett. B726 (1–3): 120–144. arXiv:1307.1432Bibcode:2013PhLB..726..120Adoi:10.1016/j.physletb.2013.08.026.
  133. ^ Chatrchyan, S.; et al. (CMS collaboration) (2013). “Higgs-like Particle in a Mirror”. Physical Review Letters110 (8): 081803. arXiv:1212.6639Bibcode:2013PhRvL.110h1803Cdoi:10.1103/PhysRevLett.110.081803PMID 23473131S2CID 2621524.
  134. ^ ATLAS; CMS Collaborations (2016). “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV”. Journal of High Energy Physics2016 (8): 45. arXiv:1606.02266Bibcode:2016JHEP…08..045Adoi:10.1007/JHEP08(2016)045S2CID 118523967.
  135. ^ “Highlights from the 2019 Moriond conference (electroweak physics)”. 29 March 2019. Retrieved 24 April 2019.
  136. ^ “All together now: adding more pieces to the Higgs boson puzzle”. ATLAS collaboration. 18 March 2019. Retrieved 24 April 2019.
  137. ^ “Long-sought decay of Higgs boson observed”Media and Press relations (Press release). CERN. 28 August 2018. Retrieved 30 August2018.
  138. ^ Atlas Collaboration (28 August 2018). “ATLAS observes elusive Higgs boson decay to a pair of bottom quarks”Atlas (Press release). CERN. Retrieved 28 August 2018.
  139. ^ CMS Collaboration (August 2018). “Observation of Higgs boson decay to bottom quarks”CMS. Retrieved 30 August 2018.
    CMS Collaboration (24 August 2018). “Observation of Higgs boson decay to bottom quarks”CERN Document Server. CERN. Retrieved 30 August 2018.
    CMS Collaboration (24 August 2018). “Observation of Higgs boson decay to bottom quarks”. Physical Review Letters121 (12): 121801. arXiv:1808.08242Bibcode:2018PhRvL.121l1801Sdoi:10.1103/PhysRevLett.121.121801PMID 30296133S2CID 118901756.
  140. ^ Peskin & Schroeder 1995, pp. 717–719, 787–791
  141. ^ Peskin & Schroeder 1995, pp. 715–716
  142. ^ Branco, G. C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, Marc; Silva, João P. (July 2012). “Theory and phenomenology of two-Higgs-doublet models”. Physics Reports516 (1): 1–102. arXiv:1106.0034Bibcode:2012PhR…516….1Bdoi:10.1016/j.physrep.2012.02.002S2CID 119214990.
  143. ^ Csaki, C.; Grojean, C.; Pilo, L.; Terning, J. (2004). “Towards a realistic model of Higgsless electroweak symmetry breaking”. Physical Review Letters92 (10): 101802. arXiv:hep-ph/0308038Bibcode:2004PhRvL..92j1802Cdoi:10.1103/PhysRevLett.92.101802PMID 15089195S2CID 6521798.
  144. ^ Csaki, C.; Grojean, C.; Pilo, L.; Terning, J.; Terning, John (2004). “Gauge theories on an interval: Unitarity without a Higgs”. Physical Review D69 (5): 055006. arXiv:hep-ph/0305237Bibcode:2004PhRvD..69e5006Cdoi:10.1103/PhysRevD.69.055006S2CID 119094852.
  145. Jump up to:a b “The Hierarchy Problem: why the Higgs has a snowball’s chance in hell”. Quantum Diaries. 1 July 2012. Retrieved 19 March 2013.
  146. ^ “The Hierarchy Problem | Of Particular Significance”. Profmattstrassler.com. Retrieved 9 October 2013.
  147. ^ D. J. E. Callaway (1988). “Triviality Pursuit: Can Elementary Scalar Particles Exist?”. Physics Reports167 (5): 241–320. Bibcode:1988PhR…167..241Cdoi:10.1016/0370-1573(88)90008-7.
  148. ^ Gunion, John (2000). The Higgs Hunter’s Guide (illustrated, reprint ed.). Westview Press. pp. 1–3. ISBN 978-0-7382-0305-8.
  149. ^ Randall, Lisa. Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions. p. 286. People initially thought of tachyons as particles travelling faster than the speed of light … But we now know that a tachyon indicates an instability in a theory that contains it. Regrettably for science fiction fans, tachyons are not real physical particles that appear in nature.
  150. ^ Sen, Ashoke (May 2002). “Rolling Tachyon”. J. High Energy Phys2002(204): 48. arXiv:hep-th/0203211Bibcode:2002JHEP…04..048Sdoi:10.1088/1126-6708/2002/04/048S2CID 12023565.
  151. ^ Kutasov, David; Marino, Marcos & Moore, Gregory W. (2000). “Some exact results on tachyon condensation in string field theory”. JHEP2000(10): 045. arXiv:hep-th/0009148Bibcode:2000JHEP…10..045Kdoi:10.1088/1126-6708/2000/10/045S2CID 15664546.
  152. ^ Aharonov, Y.; Komar, A.; Susskind, L. (1969). “Superluminal Behavior, Causality, and Instability”. Phys. Rev182 (5): 1400–1403. Bibcode:1969PhRv..182.1400Adoi:10.1103/PhysRev.182.1400.
  153. ^ Feinberg, Gerald (1967). “Possibility of faster-than-light particles”. Physical Review159 (5): 1089–1105. Bibcode:1967PhRv..159.1089Fdoi:10.1103/PhysRev.159.1089.
  154. ^ Peskin & Schroeder 1995
  155. ^ Flatow, Ira (6 July 2012). “At Long Last, The Higgs Particle… Maybe”NPR. Retrieved 10 July 2012.
  156. ^ “Explanatory Figures for the Higgs Boson Exclusion Plots”ATLAS News. CERN. Retrieved 6 July 2012.
  157. ^ Carena, M.; Grojean, C.; Kado, M.; Sharma, V. (2013). “Status of Higgs boson physics” (PDF). p. 192.
  158. ^ Lykken, Joseph D. (27 June 2009). “Beyond the Standard Model”. Proceedings of the 2009 European School of High-Energy Physics. Bautzen, Germany. arXiv:1005.1676Bibcode:2010arXiv1005.1676L.
  159. ^ Plehn, Tilman (2012). Lectures on LHC Physics. Lecture Notes in Physics. 844. Springer. §1.2.2. arXiv:0910.4182Bibcode:2012LNP…844…..Pdoi:10.1007/978-3-642-24040-9ISBN 978-3-642-24039-3S2CID 118019449.
  160. ^ “LEP Electroweak Working Group”.
  161. ^ Peskin, Michael E.; Wells, James D. (2001). “How can a heavy Higgs boson be consistent with the precision electroweak measurements?”. Physical Review D64 (9): 093003. arXiv:hep-ph/0101342Bibcode:2001PhRvD..64i3003Pdoi:10.1103/PhysRevD.64.093003S2CID 5932066.
  162. Jump up to:a b c d Baglio, Julien; Djouadi, Abdelhak (2010). “Predictions for Higgs production at the Tevatron and the associated uncertainties”. Journal of High Energy Physics1010 (10): 063. arXiv:1003.4266Bibcode:2010JHEP…10..064Bdoi:10.1007/JHEP10(2010)064S2CID 119199894.
  163. Jump up to:a b c Teixeira-Dias (LEP Higgs working group), P. (2008). “Higgs boson searches at LEP”. Journal of Physics: Conference Series110 (4): 042030. arXiv:0804.4146Bibcode:2008JPhCS.110d2030Tdoi:10.1088/1742-6596/110/4/042030S2CID 16443715.
  164. ^ Asquith, Lily (22 June 2012). “Why does the Higgs decay?”Life and Physics. London: The Guardian. Retrieved 14 August 2012.
  165. ^ Liu, G. Z.; Cheng, G. (2002). “Extension of the Anderson-Higgs mechanism”. Physical Review B65 (13): 132513. arXiv:cond-mat/0106070Bibcode:2002PhRvB..65m2513LCiteSeerX 118551025.
  166. Jump up to:a b c d e Editorial (21 March 2012). “Mass appeal: As physicists close in on the Higgs boson, they should resist calls to change its name”Nature. 483, 374 (7390): 374. Bibcode:2012Natur.483..374.doi:10.1038/483374aPMID 22437571.
  167. Jump up to:a b c d Becker, Kate (29 March 2012). “A Higgs by Any Other Name”. “NOVA” (PBS) physics. Retrieved 21 January 2013.
  168. ^ “Frequently Asked Questions: The Higgs!”CERN Bulletin (28). Retrieved 18 July 2012.
  169. Jump up to:a b Woit’s physics blog “Not Even Wrong”: Anderson on Anderson-Higgs 13 April 2013
  170. ^ Sample, Ian (4 July 2012). “Higgs boson’s many great minds cause a Nobel prize headache”The Guardian. London. Retrieved 23 July2013.
  171. Jump up to:a b Peskin, M. (July 2012). “40 Years of the Higgs Boson” (PDF)Presentation at SSI 2012. Stanford/SSI 2012. pp. 3–5. Retrieved 21 January 2013quoting Lee’s ICHEP 1972 presentation at Fermilab: “…which is known as the Higgs mechanism…” and “Lee’s locution” – his footnoted explanation of this shorthand
  172. ^ “Rochester’s Hagen Sakurai Prize Announcement” (Press release). University of Rochester. 2010. Archived from the original on 16 April 2008.
  173. ^ C.R. Hagen Sakurai Prize Talk (YouTube). 2010.
  174. Jump up to:a b Cho, A. (14 September 2012). “Particle physics. Why the ‘Higgs’?” (PDF)Science337 (6100): 1287. doi:10.1126/science.337.6100.1287PMID 22984044. Archived from the original (PDF) on 4 July 2013. Retrieved 12 February 2013Lee … apparently used the term ‘Higgs Boson’ as early as 1966 … but what may have made the term stick is a seminal paper Steven Weinberg … published in 1967 … Weinberg acknowledged the mix-up in an essay in the New York Review of Books in May 2012. (See also original article in New York Review of Books[175] and Frank Close’s 2011 book The Infinity Puzzle[82]:372 (Book extract) which identified the error)
  175. Jump up to:a b Weinberg, Steven (10 May 2012). “The Crisis of Big Science”The New York Review of Books. footnote 1. Retrieved 12 February 2013.
  176. ^ Leon Lederman; Dick Teresi (2006). The God Particle: If the Universe Is the Answer, What Is the Question?. Houghton Mifflin Harcourt. ISBN 978-0-547-52462-7.
  177. ^ Kelly Dickerson (8 September 2014). “Stephen Hawking Says ‘God Particle’ Could Wipe Out the Universe”. livescience.com.
  178. ^ Jim Baggott (2012). Higgs: The invention and discovery of the ‘God Particle’. Oxford University Press. ISBN 978-0-19-165003-1.
  179. ^ Scientific American, ed. (2012). The Higgs Boson: Searching for the God Particle. Macmillan. ISBN 978-1-4668-2413-3.
  180. ^ Ted Jaeckel (2007). The God Particle: The Discovery and Modeling of the Ultimate Prime Particle. Universal-Publishers. ISBN 978-1-58112-959-5.
  181. Jump up to:a b Aschenbach, Joy (5 December 1993). “No Resurrection in Sight for Moribund Super Collider : Science: Global financial partnerships could be the only way to salvage such a project. Some feel that Congress delivered a fatal blow”Los Angeles Times. Retrieved 16 January2013‘We have to keep the momentum and optimism and start thinking about international collaboration,’ said Leon M. Lederman, the Nobel Prize-winning physicist who was the architect of the super collider plan
  182. ^ “A Supercompetition For Illinois”Chicago Tribune. 31 October 1986. Retrieved 16 January 2013The SSC, proposed by the U.S. Department of Energy in 1983, is a mind-bending project … this gigantic laboratory … this titanic project
  183. ^ Diaz, Jesus (15 December 2012). “This Is [The] World’s Largest Super Collider That Never Was”Gizmodo. Retrieved 16 January 2013…this titanic complex…
  184. ^ Abbott, Charles (June 1987). “Illinois Issues journal, June 1987”. p. 18. Lederman, who considers himself an unofficial propagandist for the super collider, said the SSC could reverse the physics brain drain in which bright young physicists have left America to work in Europe and elsewhere.
  185. ^ Kevles, Dan. “Good-bye to the SSC: On the Life and Death of the Superconducting Super Collider” (PDF)California Institute of Technology: “Engineering & Science”. 58 no. 2 (Winter 1995): 16–25. Retrieved 16 January 2013Lederman, one of the principal spokesmen for the SSC, was an accomplished high-energy experimentalist who had made Nobel Prize-winning contributions to the development of the Standard Model during the 1960s (although the prize itself did not come until 1988). He was a fixture at congressional hearings on the collider, an unbridled advocate of its merits.
  186. ^ Calder, Nigel (2005). Magic Universe:A Grand Tour of Modern Science. pp. 369–370. ISBN 978-0-19-162235-9The possibility that the next big machine would create the Higgs became a carrot to dangle in front of funding agencies and politicians. A prominent American physicist, Leon lederman [sic], advertised the Higgs as The God Particle in the title of a book published in 1993 …Lederman was involved in a campaign to persuade the US government to continue funding the Superconducting Super Collider… the ink was not dry on Lederman’s book before the US Congress decided to write off the billions of dollars already spent
  187. ^ Lederman, Leon (1993). The God Particle If the Universe Is the Answer, What Is the Question?. Dell Publishing. Chapter 2, p. 2. ISBN 978-0-385-31211-0. Retrieved 30 July 2015.
  188. ^ Alister McGrath (15 December 2011). “Higgs boson: the particle of faith”The Daily Telegraph. Archived from the original on 15 December 2011. Retrieved 15 December 2011.
  189. ^ Sample, Ian (3 March 2009). “Father of the God particle: Portrait of Peter Higgs unveiled”The Guardian. London. Retrieved 24 June2009.
  190. Jump up to:a b Chivers, Tom (13 December 2011). “How the ‘God particle’ got its name”The Telegraph. London. Retrieved 3 December 2012.
  191. ^ Key scientist sure “God particle” will be found soon Reuters news story. 7 April 2008.
  192. ^ Interview: the man behind the ‘God particle’“, New Scientist 13 September 2008, pp. 44–5 (original interview in the Guardian: Father of the ‘God Particle’, 30 June 2008)
  193. ^ Borowitz, Andy (13 July 2012). “5 questions for the Higgs boson”The New Yorker.
  194. ^ Sample, Ian (2010). Massive: The Hunt for the God Particle. pp. 148–149 and 278–279. ISBN 978-1-905264-95-7.
  195. ^ Cole, K. (14 December 2000). “One Thing Is Perfectly Clear: Nothingness Is Perfect”Los Angeles Times. p. Science File. Retrieved 17 January 2013Consider the early universe–a state of pure, perfect nothingness; a formless fog of undifferentiated stuff … ‘perfect symmetry’ … What shattered this primordial perfection? One likely culprit is the so-called Higgs field … Physicist Leon Lederman compares the way the Higgs operates to the biblical story of Babel [whose citizens] all spoke the same language … Like God, says Lederman, the Higgs differentiated the perfect sameness, confusing everyone (physicists included) … [Nobel Prizewinner Richard] Feynman wondered why the universe we live in was so obviously askew … Perhaps, he speculated, total perfection would have been unacceptable to God. And so, just as God shattered the perfection of Babel, ‘God made the laws only nearly symmetrical’
  196. ^ Lederman, p. 22 et seq:
    “Something we cannot yet detect and which, one might say, has been put there to test and confuse us … The issue is whether physicists will be confounded by this puzzle or whether, in contrast to the unhappy Babylonians, we will continue to build the tower and, as Einstein put it, ‘know the mind of God’.”
    “And the Lord said, Behold the people are un-confounding my confounding. And the Lord sighed and said, Go to, let us go down, and there give them the God Particle so that they may see how beautiful is the universe I have made”.
  197. ^ Sample, Ian (12 June 2009). “Higgs competition: Crack open the bubbly, the God particle is dead”The Guardian. London. Retrieved 4 May 2010.
  198. ^ Gordon, Fraser (5 July 2012). “Introducing the higgson”physicsworld.com. Retrieved 25 August 2012.
  199. ^ Wolchover, Natalie (3 July 2012). “Higgs Boson Explained: How ‘God Particle’ Gives Things Mass”Huffington Post. Retrieved 21 January2013.
  200. ^ Oliver, Laura (4 July 2012). “Higgs boson: how would you explain it to a seven-year-old?”The Guardian. London. Retrieved 21 January 2013.
  201. ^ Zimmer, Ben (15 July 2012). “Higgs boson metaphors as clear as molasses”The Boston Globe. Retrieved 21 January 2013.
  202. ^ “The Higgs particle: an analogy for Physics classroom (section)”. www.lhc-closer.es (a collaboration website of LHCb physicist Xabier Vidal and High School Teachers at CERN educator Ramon Manzano). Retrieved 9 January 2013.
  203. ^ Flam, Faye (12 July 2012). “Finally – A Higgs Boson Story Anyone Can Understand”The Philadelphia Inquirer (philly.com). Retrieved 21 January 2013.
  204. ^ Sample, Ian (28 April 2011). “How will we know when the Higgs particle has been detected?”The Guardian. London. Retrieved 21 January2013.
  205. Jump up to:a b Miller, David. “A quasi-political explanation of the Higgs boson; for Mr. Waldegrave, UK Science Minister, 1993”. Retrieved 10 July 2012.
  206. ^ Kathryn Jepsen (1 March 2012). “Ten things you may not know about the Higgs boson”Symmetry Magazine. Archived from the original on 14 August 2012. Retrieved 10 July 2012.
  207. ^ Goldberg, David (17 November 2010). “What’s the Matter with the Higgs Boson?”io9. Archived from the original on 21 January 2013. Retrieved 21 January 2013.
  208. ^ The Nobel Prize in Physics 1979 – official Nobel Prize website.
  209. ^ The Nobel Prize in Physics 1999 – official Nobel Prize website.
  210. ^ breakthroughprize.org: Fabiola Gianotti Archived 25 July 2015 at the Wayback MachinePeter Jenni
  211. ^ 2013 Physics – official Nobel Prize website.
  212. ^ Overbye, D. (8 October 2013). “For Nobel, They Can Thank the ‘God ParticleThe New York Times. Retrieved 3 November 2013.
  213. ^ Daigle, Katy (10 July 2012). “India: Enough about Higgs, let’s discuss the boson”AP News. Archived from the original on 23 September 2012. Retrieved 10 July 2012.
  214. ^ Bal, Hartosh Singh (19 September 2012). “The Bose in the Boson”New York Times. Retrieved 21 September 2012.
  215. ^ Alikhan, Anvar (16 July 2012). “The Spark In A Crowded Field”Outlook India. Retrieved 10 July 2012.
  216. Jump up to:a b c d Peskin & Schroeder 1995, Chapter 20
  217. ^ Nakano, T.; Nishijima, N. (1953). “Charge independence for V-particles”Progress of Theoretical Physics10 (5): 581. Bibcode:1953PThPh..10..581Ndoi:10.1143/PTP.10.581.
  218. ^ Nishijima, K. (1955). “Charge independence theory of V-particles”Progress of Theoretical Physics13 (3): 285–304. Bibcode:1955PThPh..13..285Ndoi:10.1143/PTP.13.285.
  219. ^ Gell-Mann, M. (1956). “The interpretation of the new particles as displaced charged multiplets”. Il Nuovo Cimento4 (S2): 848–866. Bibcode:1956NCim….4S.848Gdoi:10.1007/BF02748000S2CID 121017243.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Modifications to this referenced work is licensed under the agreement.