Rare Earth Elements (Definition and Guide)

rare earth elements

The rare-earth elements (rare-earth metals), or the lanthanides are 17 soft, heavy metals. These metals tarnish slowly in air and react slowly with water to form hydroxides. They can form oxides and ignite spontaneously above 400 °C. They have diverse applications in electronic components, lasers, glass, magnetic materials and industrial processes.

The history of rare earth elements?

The first rare-earth element was ytterbite, discovered by Arrhenius in 1787, in Ytterby, Sweden. Arrhenius’s ytterbite reached Gadolin, a professor at the Royal Academy of Turku. He yielded an oxide that he called yttria. Ekeberg, proceeded to isolate beryllium from the gadolinite.

After this discovery in 1794, a mineral from Bastnäs, Sweden, was re-examined by Berzelius and Hisinger and they observed a white oxide, naming it ceria. The new elements, yttrium and cerium were the only discoveries of rare earth elements for the next 30 years.

In 1839 Mosander heated the nitrate and dissolved it in nitric acid, leading to an oxide he later named lanthana. 3 years later he separated the lanthana into didymia and pure lanthana. In 1842 Mosander also separated the yttria into three oxides: pure yttria, terbia and erbia. The earth giving pink salts he called terbium and the yellow ones, erbium. The six verified elements by 1842 were; yttrium, cerium, lanthanum, didymium, erbium and terbium.

Discovery and characterisation of the last rare earth elements

In 1879 Delafontaine benefitted from a newly discovered process, flame spectroscopy, leading to several new optical lines within didymia. In the same year, samarium was also isolated by Lecoq de Boisbaudran. Further research of samaria, yttria, and samarskite, showed the existence of an unknown element, later revealing europium. In 1839 a mineral from Miass in the Ural Mountains was documented by Rose and later Blomstrand, Galissard de Marignac. Rose found tantalum and niobium.

The use of X-ray spectra, through X-ray crystallography made it possible to assign atomic numbers. Hafnium sits in the periodic table below zirconium and they are very similar in their chemical and physical properties.

Spedding and others in the United States, as part of the Manhattan Project in the 1940’s, developed chemical ion-exchange procedures for separating the rare-earth elements. This was used for separating plutonium-239 and neptunium from uranium, thorium, actinium.

Rare-earth elements are derived from bastnäsite, monazite, and loparite. Rare-earth minerals are difficult to extract and mine, relative to the transition metals, this makes industrial extraction very expensive. Ion exchange, fractional crystallisation and liquid–liquid extraction has optimised the extraction process and made their use more readily available.


Rare earth metals – Lithium in Cornwall

Cornish Lithium, pioneering the UK industry for battery rare earth metals, continue ongoing drilling work in Cornwall, UK. The company is aiming to pursue lithium from hot water brines, which sit within the historic tin and copper mines. Additionally, the company is chasing lithium extraction from hard rock, believing that it was mined on the surface during World War II.

Cornish Lithium will also explore lithium and other rare minerals. This valuable data being recorded via contemporary imaging 3D techniques, highlights a fresh understanding of the geological potential of the region’s deposits.


List and applications of rare earth metals

Rare earth elements are widely used in low carbon technologies. China produces >95% of the World’s supply but has been steadily reducing supply. The restrictions to the UK economy is currently limited but as the UK drives new green initiatives and technology becomes ever more prominent a future strategy and its economic importance to the UK has to be focused upon. The US and Australia are ramping up supply to offset the slowing Chinese market. Below are applications in today’s global marketplace for each of the rare earth metals:

Scandium alloys for the aerospace industry

Yttrium phosphors, ceramics, metal alloys

Lanthanum batteries, catalysts for refining

Cerium catalysts, polishing

Praseodymium magnet corrosion resistance

Neodymium powerful magnets for laptops, lasers

Promethium beta radiation source

Samarium high temperature magnets, reactor control rods

Europium liquid crystal displays

Gadolinium magnetic resonance imaging contrast agent

Terbium phosphors for lighting

Dysprosium high power magnets, lasers

Holmium the most powerful magnets

Erbium lasers

Thulium ceramic magnetic materials

Ytterbium fibre optic technology, solar panels

Lutetium X-ray phosphors



Rare earth elements used in magnets

Neodymium and samarium cobalt magnets are the main types. These are split into a variation of grades which exhibit different properties. Samarium cobalt magnets are made from an alloy of samarium, cobalt, iron, copper, hafnium, zirconium and praseodymium. They have very high maximum operating temperatures and are extremely resistant to corrosion.

Neodymium magnets, discovered in 1982 by GM and Sumitomo Special Metals became the strongest permanent magnets. They are constructed from an alloy containing neodymium, iron and boron. Middle range neodymium magnets exhibit less tolerance to corrosion.


Rare earth metals China

China announced regulations on exports and a crackdown on smuggling. In 2010, China Daily, citing an unnamed Ministry of Commerce official, reported that China will “further reduce quotas for rare earth exports by 30 percent to protect the precious metals from over-exploitation.” At the end of 2010, China announced that the first round of export quotas in 2011 for rare earths would be a 35% decrease from the previous first round of quotas. In September 2011, China announced the halt in production of three of its eight major rare-earth mines. In March 2012, the US, EU, and Japan confronted China at WTO about these export and production restrictions. In August 2012, China announced a further 20% reduction in production. The United States, Japan, and the European Union filed a joint lawsuit with the World Trade Organisation, arguing that China should not be able to deny such important exports.

In response to the opening of new mines in other countries (Australia and the United States), prices of rare earths dropped. On August 29, 2014, the WTO ruled that China had broken free-trade agreements, and the WTO said in the summary of key findings that “the overall effect of the foreign and domestic restrictions is to encourage domestic extraction and secure preferential use of those materials by Chinese manufacturers.”


Rare earth metals in your mobile phone batteries…

Rare earth elements make-up your glass backlit display, magnets in speakers, to the motors, making it vibrate. Beyond mobile devices, they are found in electric cars, solar cells, and batteries. The irony is that the components they create are part of the new, renewable energy drive. A hybrid Toyota Prius, for example, uses >10kg of rare earths in its main floor battery. This is just one of many hybrid and electric vehicles.

Rare earth elements and the environment

They are found in very minute concentrations in the Earth’s crust. Rare earth elements can be absorbed into plants and consumed by humans and animals. Mining sites see the concentrations rise above the normal background expectations. Once in the environment they can leach into the soil where they travel by numerous means like ground erosion, pH, precipitation and ground water.

Extraction rely’s on the production of phosphorus fertilisers which contribute to contamination. Strong acids are also used during this process, which can then leach out in to the environment. Additionally, cerium oxide which is produced during the combustion of diesel as an exhaust particulate, contributes to soil contamination. Refining, and recycling have serious environmental consequences. Radioactive tailings resulting from the occurrence of thorium and uranium in rare-earth element ores present a potential hazard leading to extensive environmental damage. An example is the large-scale operation in Baotou, in Inner Mongolia, where much of the world’s supply is refined, has caused major environmental damage.



Recent category posts


  1.  N. G. Connelly and T. Damhus, ed. (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005(PDF). With R. M. Hartshorn and A. T. Hutton. Cambridge: RSC Publishing. ISBN 978-0-85404-438-2. Archived from the original (PDF) on May 27, 2008. Retrieved March 13, 2012.
  2. Jump up to:a b c Professor of Chemistry at University College LondonAndrea SellaAndrea Sella: “Insight: Rare-earth metals” on YouTube, Interview on TRT World / Oct 2016, minutes 4:40 – ff.
  3. ^ T Gray (2007). “Lanthanum and Cerium”. The Elements. Black Dog & Leventhal. pp. 118–122.
  4. Jump up to:a b Haxel G.; Hedrick J.; Orris J. (2002). “Rare Earth Elements—Critical Resources for High Technology” (PDF). Edited by Peter H. Stauffer and James W. Hendley II; Graphic design by Gordon B. Haxel, Sara Boore, and Susan Mayfield. United States Geological Survey. USGS Fact Sheet: 087‐02. Retrieved March 13, 2012However, in contrast to ordinary base and precious metals, REE have very little tendency to become concentrated in exploitable ore deposits. Consequently, most of the world’s supply of REE comes from only a handful of sources.
  5. ^ Keith R. Long; Bradley S. Van Gosen; Nora K. Foley; Daniel Cordier. “The Geology of Rare Earth Elements”Geology.com. Retrieved June 19, 2018.
  6. ^ Lide (1997).
  7. Jump up to:a b c C. R. Hammond. “Section 4; The Elements”. In David R. Lide (ed.). CRC Handbook of Chemistry and Physics. (Internet Version 2009) (89th ed.). Boca Raton, FL: CRC Press/Taylor and Francis.
  8. ^ “Rare-earth metals”Think GlobalGreen. Archived from the original on November 4, 2016. Retrieved February 10,2017.
  9. ^ Fritz Ullmann, ed. (2003). Ullmann’s Encyclopedia of Industrial Chemistry31. Contributor: Matthias Bohnet (6th ed.). Wiley-VCH. p. 24. ISBN 978-3-527-30385-4.
  10. ^ Gschneidner K. A., Cappellen, ed. (1987). “1787–1987 Two hundred Years of Rare Earths”. Rare Earth Information Center, IPRT, North-Holland. IS-RIC 10.
  11. ^ History of the Origin of the Chemical Elements and Their Discoverers
  12. ^ Stephen David Barrett; Sarnjeet S. Dhesi (2001). The Structure of Rare-earth Metal Surfaces. World Scientific. p. 4. ISBN 978-1-86094-165-8.
  13. ^ On Rare And Scattered Metals: Tales About Metals, Sergei Venetsky
  14. ^ Spedding F., Daane A. H.: “The Rare Earths”, John Wiley & Sons, Inc., 1961.
  15. ^ Qi, Dezhi (2018). Hydrometallurgy of Rare Earths. Elsevier. pp. 162–165. ISBN 9780128139202.
  16. ^ B. Smith Hopkins: “Chemistry of the rarer elements”, D. C. Heath & Company, 1923.
  17. ^ McGill, Ian. “Rare Earth Elements”. Ullmann’s Encyclopedia of Industrial Chemistry31. Weinheim: Wiley-VCH. p. 184. doi:10.1002/14356007.a22_607.
  18. ^ Zepf, Volker (2013). Rare earth elements: a new approach to the nexus of supply, demand and use : exemplified along the use of neodymium in permanent magnets. Berlin; London: Springer. ISBN 9783642354588.
  19. Jump up to:a b c d e f g h i Rollinson, Hugh R. (1993). Using geochemical data : evaluation, presentation, interpretation. Harlow, Essex, England: Longman Scientific & Technical. ISBN 9780582067011OCLC 27937350.
  20. Jump up to:a b c Brownlow, Arthur H (1996). Geochemistry. Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0133982725OCLC 33044175.
  21. Jump up to:a b c d Working Group (December 2011). “Rare Earth Elements” (PDF). Geological Society of London. Retrieved May 18, 2018.
  22. ^ P. Belli; R. Bernabei; F. Cappella; R. Cerulli; C. J. Dai; F. A. Danevich; A. d’Angelo; A. Incicchitti; V. V. Kobychev; S. S. Nagorny; S. Nisi; F. Nozzoli; D. Prosperi; V. I. Tretyak; S. S. Yurchenko (2007). “Search for α decay of natural Europium”. Nuclear Physics A789 (1–4): 15–29. Bibcode:2007NuPhA.789…15Bdoi:10.1016/j.nuclphysa.2007.03.001.
  23. Jump up to:a b c d e f g h i j k l Winter, John D. (2010). Principles of igneous and metamorphic petrology (2nd ed.). New York: Prentice Hall. ISBN 9780321592576OCLC 262694332.
  24. Jump up to:a b c d e f g h i j k l m n Jébrak, Michel; Marcoux, Eric; Laithier, Michelle; Skipwith, Patrick (2014). Geology of mineral resources (2nd ed.). St. John’s, NL: Geological Association of Canada. ISBN 9781897095737OCLC 933724718.
  25. Jump up to:a b c d Powell, Devin, “Rare earth elements plentiful in ocean sediments”ScienceNews, 3 July 2011. Via Kurt Brouwer’s Fundmastery BlogMarketWatch, 2011-07-05. Retrieved 2011-07-05.
  26. ^ Rose, Edward Roderick (February 4, 1960). “Rare Earths of the Grenville Sub-Province, Ontario and Quebec” (PDF)(Paper 59–10). Ottawa: Geological Survey of Canada. Retrieved May 18, 2018.
  27. Jump up to:a b c d e f China’s Rare Earth Dominance, Wikinvest. Retrieved on 11 Aug 2010.
  28. ^ Gambogi, Joseph (January 2018). “Rare Earths” (PDF)Mineral Commodity Summaries. U.S. Geological Survey. pp. 132–133. Retrieved February 14, 2018.
  29. ^ Chao E. C. T., Back J. M., Minkin J., Tatsumoto M., Junwen W., Conrad J. E., McKee E. H., Zonglin H., Qingrun M. “Sedimentary carbonate‐hosted giant Bayan Obo REE‐Fe‐Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin”. 1997. United States Geological Survey. 29 February 2008. Bulletin 2143.
  30. ^ “Overview”. Northern Minerals Limited. Retrieved April 21,2018.
  31. ^ “Cox C. 2008. Rare earth innovation. Herndon (VA): The Anchor House Inc;”. Retrieved April 19, 2008.
  32. Jump up to:a b “As hybrid cars gobble rare metals, shortage looms”. Reuters. August 31, 2009. Retrieved Aug 31, 2009.
  33. Jump up to:a b Massari, Stefania; Ruberti, Marcello (March 1, 2013). “Rare earth elements as critical raw materials: Focus on international markets and future strategies”. Resources Policy38 (1): 36–43. doi:10.1016/j.resourpol.2012.07.001ISSN 0301-4207.
  34. ^ “The Rare-Earth Elements—Vital to Modern Technologies and Lifestyles” (PDF). United Stated Geological Survey. November 2014. Retrieved March 13, 2018.
  35. ^ Ma, Damien (April 25, 2012). “China Digs It”Foreign Affairs. Retrieved February 10, 2017.
  36. Jump up to:a b Livergood, R. (October 5, 2010). “Rare Earth Elements: A Wrench in the Supply Chain” (PDF). Center for Strategic and International Studies. Retrieved March 13, 2012.
  37. ^ “China To Limit Rare Earths Exports”Manufacturing.net, 1 September 2009. Archived from the original on July 26, 2011. Retrieved August 30, 2010.
  38. ^ Ben Geman (October 19, 2009). “China to cut exports of ‘rare earth’ minerals vital to energy tech”The Hill’s E2 Wire. Archived from the original on October 21, 2010. Retrieved October 19, 2010.
  39. ^ Tony Jin (January 18, 2011). “China’s Rare Earth Exports Surge in Value”The China Perspective. Archived from the original on February 13, 2011. Retrieved January 19, 2011.
  40. ^ Zhang Qi; Ding Qingfen; Fu Jing (July 15, 2011). “Rare earths export quota unchanged”China Daily. Archived from the original on July 24, 2011.
  41. Jump up to:a b “China halts rare earth production at three mines”Reuters. September 6, 2011. Retrieved September 7, 2011.
  42. ^ “WRAPUP 4-US, EU, Japan take on China at WTO over rare earths”Reuters. March 13, 2017. Retrieved February 10, 2017.
  43. Jump up to:a b c d “Rare Earths: The Hidden Cost to Their Magic”, Distillations Podcast and transcript, Episode 242″Science History Institute. June 25, 2019. Retrieved August 28, 2019.
  44. ^ Kevin Voigt (August 8, 2012). “China cuts mines vital to tech industry”CNN.
  45. ^ Tim Worstall (December 23, 2012). “El Reg man: Too bad, China – I was RIGHT about hoarding rare earths”The Register. Retrieved February 10, 2017.
  46. ^ “China scraps quotas on rare earths after WTO complaint”The Guardian. January 5, 2015. Retrieved January 5, 2015.
  47. ^ “DS431: China — Measures Related to the Exportation of Rare Earths, Tungsten and Molybdenum”World Trade Organization. Retrieved May 1, 2014.
  48. ^ “EU stockpiles rare earths as tensions with China rise”Financial Post. Reuters. September 6, 2011. Retrieved September 7, 2011.
  49. ^ “Canadian Firms Step Up Search for Rare-Earth Metals”NYTimes.com. Reuters. September 9, 2009. Retrieved September 15, 2009.
  50. Jump up to:a b Leifert, H. (June 2010). “Restarting US rare earth production?”. Earth. pp. 20–21.
  51. ^ Editor. “About The Mine”Steenkampskraal Rare Earths Mine. Retrieved July 19, 2019.
  52. ^ Lunn, J. (2006). “Great western minerals” (PDF). London: Insigner Beaufort Equity Research. Archived from the original (PDF) on April 9, 2008. Retrieved April 19, 2008.
  53. ^ Gorman, Steve (August 30, 2009). “California mine digs in for ‘green’ gold rush”Reuters. Retrieved March 22, 2010.
  54. ^ “Hoidas Lake, Saskatchewan”. Great Western Mineral Group Ltd. Archived from the original on March 31, 2009. Retrieved September 24, 2008.
  55. ^ “Rare earths supply deal between Japan and Vietnam”BBC News. October 31, 2010.
  56. ^ “Vietnam signs major nuclear pacts”AlJazeera. October 31, 2010. Retrieved October 31, 2010.
  57. ^ “Mining Venture Draws $200 Million in Tax Incentives and Red Flags (1)”news.bloombergtax.com. Retrieved December 1, 2020.
  58. ^ “Long-discussed niobium mine in southeast Nebraska is ready to move forward, if it gathers $1 billion in financing “. Retrieved May 18, 2019.
  59. ^ “NioCorp Superalloy Materials The Elk Creek Superalloy Materials Project” (PDF). Retrieved May 18, 2019.
  60. ^ “Federal minister approves N.W.T. rare earth mine”CBC News. November 4, 2013. It follows the recommendation from the Mackenzie Valley Environmental Review Board in July, and marks a major milestone in the company’s effort to turn the project into an operating mine. Avalon claims Nechalacho is “the most advanced large heavy rare earth development project in the world”.
  61. ^ “Rare Earth Elements at Kvanefjeld”Greenland Minerals and Energy Ltd. Archived from the original on September 18, 2010. Retrieved November 10, 2010.
  62. ^ “New Multi-Element Targets and Overall Resource Potential”Greenland Minerals and Energy Ltd. Archived from the original on November 18, 2010. Retrieved November 10, 2010.
  63. ^ Carol Matlack (February 10, 2013). “Chinese Workers—in Greenland?”Business Week.
  64. ^ Bomsdorf, Clemens (March 13, 2013). “Greenland Votes to Get Tough on Investors”The Wall Street Journal. Retrieved February 10, 2017.
  65. ^ “Hay tierras raras aquí y están… en un lugar de La Mancha”ELMUNDO (in Spanish). May 24, 2019. Retrieved May 24, 2019.
  66. ^ “Maiden Resource, Ngualla Rare Earth Project” (PDF)ASX Release. Peak Resources. February 29, 2012.
  67. ^ Petrov, Leonid (August 8, 2012). “Rare earths bankroll North Korea’s future”Asia Times. Retrieved October 22, 2018.
  68. ^ “북한, 올 5~6월 희토류 중국 수출 크게 늘어” [North Korea Rare Earth exports to China increased significantly from May to June]. voakorea.com (in Korean). July 28, 2014.
  69. ^ Bradsher, Keith (March 8, 2011). “Taking a Risk for Rare Earths”The New York Times. (March 9, 2011 p. B1 NY ed.). Retrieved March 9, 2011.
  70. ^ “Kronologi Peristiwa di Kilang Nadir Bumi, Bukit Merah”[Chronology of Events at the Rare Earth Factory, Red Hill] (in Malay). Penang Consumer Association. Retrieved August 26,2019.
  71. Jump up to:a b Bradsher, Keith (March 8, 2011). “Mitsubishi Quietly Cleans Up Its Former Refinery”The New York Times. (March 9, 2011 p. B4 NY ed.). Retrieved March 9, 2011.
  72. Jump up to:a b Coleman, Murray (June 30, 2011). “Rare Earth ETF Jumps As Plans To Break China’s Hold Suffer Setback”Barron’s. Archived from the original on July 3, 2011. Retrieved June 30, 2011.
  73. ^ Report of the International Review Mission on the Radiation Safety Aspects of a Proposed Rare Earths Processing Facility (Lynas Project) (PDF). (29 May – 3 June 2011). International Atomic Energy Agency. 2011. Archived from the original (PDF) on November 12, 2011. Retrieved February 15, 2018.
  74. ^ Ng, Eileen (September 2, 2014). “Lynas gets full operating licence before TOL expiry date”The Malaysian Insider. Archived from the original on September 4, 2014. Retrieved September 3, 2014.
  75. ^ Rofer, Cheryl K.; Tõnis Kaasik (2000). Turning a Problem Into a Resource: Remediation and Waste Management at the Sillamäe Site, Estonia. Volume 28 of NATO science series: Disarmament technologies. Springer. p. 229. ISBN 978-0-7923-6187-9.
  76. ^ Anneli Reigas (November 30, 2010). “Estonia’s rare earth break China’s market grip”AFP. Retrieved December 1,2010.
  77. ^ Cone, Tracie (July 21, 2013). “Gold Rush Trash is Information Age Treasure”USA Today. Retrieved July 21,2013.
  78. ^ “Japan Discovers Domestic Rare Earths Reserve”. BrightWire. Archived from the original on July 23, 2012.
  79. ^ “Brightwire”. Retrieved February 10, 2017.
  80. ^ “Seabed offers brighter hope in rare-earth hunt”Nikkei Asian Review. Nikkei Inc. November 25, 2014. Retrieved December 11, 2016.
  81. ^ “Discovery of rare earths around Minami-Torishima”UTokyo Research. University of Tokyo. May 2, 2013. Retrieved December 11, 2016.
  82. ^ Zhi Li, Ling; Yang, Xiaosheng (September 4, 2014). China’s rare earth ore deposits and beneficiation techniques (PDF). 1st European Rare Earth Resources Conference. Milos, Greece: European Commission for the ‘Development of a sustainable exploitation scheme for Europe’s Rare Earth ore deposits’. Retrieved December 11, 2016.
  83. ^ Um, Namil (July 2017). Hydrometallurgical recovery process of rare earth elements from waste: main application of acid leaching with devised diagram. INTECH. pp. 41–60. ISBN 978-953-51-3401-5.
  84. ^ “New liquid extraction frontier for rare earths?”. Recycling International. March 26, 2013. Retrieved February 10, 2017.
  85. ^ Tabuchi, Hiroko (October 5, 2010). “Japan Recycles Minerals From Used Electronics”New York Times.
  86. ^ “Rhodia to recycle rare earths from magnets”Solvay — Rhodia. October 3, 2011. Archived from the original on April 21, 2014.
  87. ^ “Rhodia expands rare earth recycling reach”. Recycling International. October 11, 2011. Retrieved February 10, 2017.
  88. ^ Wencai Zhang; Mohammad Rezaee; Abhijit Bhagavatula; Yonggai Li; John Groppo; Rick Honaker (2015). “A Review of the Occurrence and Promising Recovery Methods of Rare Earth Elements from Coal and Coal By-Products”. International Journal of Coal Preparation and Utilization35(6): 295–330. doi:10.1080/19392699.2015.1033097S2CID 128509001.
  89. Jump up to:a b Zhou, Baolu; Li, Zhongxue; Chen, Congcong (October 25, 2017). “Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies”Minerals7(11): 203. doi:10.3390/min7110203See production in Figure 1 on page 2
  90. Jump up to:a b “Mineral Commodity Summaries 2019”Mineral Commodity Summaries. 2019. p. 132. doi:10.3133/70202434.
  91. ^ F. J. Duarte (Ed.), Tunable Lasers Handbook (Academic, New York, 1995).
  92. Jump up to:a b Pang, Xin; Li, Decheng; Peng, An (March 1, 2002). “Application of rare-earth elements in the agriculture of China and its environmental behavior in soil”Environmental Science and Pollution Research9 (2): 143–8. doi:10.1007/BF02987462ISSN 0944-1344PMID 12008295S2CID 11359274.
  93. Jump up to:a b c d e Rim, Kyung-Taek (September 1, 2016). “Effects of rare earth elements on the environment and human health: A literature review”. Toxicology and Environmental Health Sciences8 (3): 189–200. doi:10.1007/s13530-016-0276-yISSN 2005-9752S2CID 17407586.
  94. Jump up to:a b Ali, Saleem H. (February 13, 2014). “Social and Environmental Impact of the Rare Earth Industries”Resources3 (1): 123–134. doi:10.3390/resources3010123.
  95. Jump up to:a b “The myth of the green cloud”European Investment Bank. Retrieved September 17, 2020.
  96. Jump up to:a b Volokh, A. A.; Gorbunov, A. V.; Gundorina, S. F.; Revich, B. A.; Frontasyeva, M. V.; Chen Sen Pal (June 1, 1990). “Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment”. Science of the Total Environment95: 141–148. Bibcode:1990ScTEn..95..141Vdoi:10.1016/0048-9697(90)90059-4ISSN 0048-9697PMID 2169646.
  97. ^ Bourzac, Katherine. “Can the US Rare-Earth Industry Rebound?” Technology Review. October 29, 2010.
  98. ^ “Govt cracks whip on rare earth mining”. China Mining Association. May 21, 2010. Archived from the original on July 25, 2011. Retrieved June 3, 2010.
  99. ^ Lee Yong-tim (February 22, 2008). “South China Villagers Slam Pollution From Rare Earth Mine”Radio Free Asia. Retrieved March 16, 2008.
  100. Jump up to:a b Bradsher, Keith (October 29, 2010). “After China’s Rare Earth Embargo, a New Calculus”The New York Times. Retrieved October 30, 2010.
  101. Jump up to:a b Lee, Yoolim, “Malaysia Rare Earths in Largest Would-Be Refinery Incite Protest”Bloomberg Markets Magazine, May 31, 2011 5:00 PM ET.
  102. ^ “UN investigation into Malaysia rare-earth plant safety”BBC, 30 May 2011 05:52 ET.
  103. ^ IAEA Submits Lynas Report to Malaysian Government. Iaea.org (2011-06-29). Retrieved on 2011-09-27.
  104. ^ Tim Heffernan (June 16, 2015). “Why rare-earth mining in the West is a bust”High Country News.
  105. ^ Yang, Xiuli; Zhang, Junwei; Fang, Xihui (August 30, 2014). “Rare earth element recycling from waste nickel-metal hydride batteries”. Journal of Hazardous Materials279: 384–388. doi:10.1016/j.jhazmat.2014.07.027ISSN 0304-3894PMID 25089667.
  106. ^ Martinez, Raul E.; Pourret, Olivier; Faucon, Michel-Pierre; Dian, Charlotte (June 20, 2018). “Effect of rare earth elements on rice plant growth” (PDF)Chemical Geology489: 28–37. Bibcode:2018ChGeo.489…28Mdoi:10.1016/j.chemgeo.2018.05.012ISSN 0009-2541.
  107. Jump up to:a b Chua, H (June 18, 1998). “Bio-accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart.) Solms in Guangdong Province of China”. Science of the Total Environment214 (1–3): 79–85. Bibcode:1998ScTEn.214…79Cdoi:10.1016/S0048-9697(98)00055-2ISSN 0048-9697.
  108. Jump up to:a b Rim, Kyung Taek; Koo, Kwon Ho; Park, Jung Sun (2013). “Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review”Safety and Health at Work4 (1): 12–26. doi:10.5491/shaw.2013.4.1.12PMC 3601293PMID 23516020.
  109. Jump up to:a b c Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin (December 1, 2017). “Rare earth elements in street dust and associated health risk in a municipal industrial base of central China”Environmental Geochemistry and Health39 (6): 1469–1486. doi:10.1007/s10653-017-9982-xISSN 0269-4042PMID 28550599S2CID 31655372.
  110. Jump up to:a b c Ramos, Silvio J.; Dinali, Guilherme S.; Oliveira, Cynthia; Martins, Gabriel C.; Moreira, Cristiano G.; Siqueira, José O.; Guilherme, Luiz R. G. (March 1, 2016). “Rare Earth Elements in the Soil Environment”Current Pollution Reports2 (1): 28–50. doi:10.1007/s40726-016-0026-4ISSN 2198-6592.
  111. ^ Li, Xiaofei; Chen, Zhibiao; Chen, Zhiqiang; Zhang, Yonghe (October 1, 2013). “A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China”Chemosphere93 (6): 1240–1246. Bibcode:2013Chmsp..93.1240Ldoi:10.1016/j.chemosphere.2013.06.085ISSN 0045-6535PMID 23891580.
  112. ^ Zhuang, Maoqiang; Wang, Liansen; Wu, Guangjian; Wang, Kebo; Jiang, Xiaofeng; Liu, Taibin; Xiao, Peirui; Yu, Lianlong; Jiang, Ying (August 29, 2017). “Health risk assessment of rare earth elements in cereals from mining area in Shandong, China”Scientific Reports7 (1): 9772. Bibcode:2017NatSR…7.9772Zdoi:10.1038/s41598-017-10256-7ISSN 2045-2322PMC 5575011PMID 28852170.
  113. ^ Zhong, Buqing; Wang, Lingqing; Liang, Tao; Xing, Baoshan (October 2017). “Pollution level and inhalation exposure of ambient aerosol fluoride as affected by polymetallic rare earth mining and smelting in Baotou, north China”. Atmospheric Environment167: 40–48. Bibcode:2017AtmEn.167…40Zdoi:10.1016/j.atmosenv.2017.08.014.
  114. ^ “Malaysia court rejects pollution suit against ARE”. World Information Service on Energy. February 11, 1994.
  115. Jump up to:a b c d e Pagano, Giovanni; Aliberti, Francesco; Guida, Marco; Oral, Rahime; Siciliano, Antonietta; Trifuoggi, Marco; Tommasi, Franca (2015). “Rare earth elements in human and animal health: State of art and research priorities”. Environmental Research142: 215–220. Bibcode:2015ER….142..215Pdoi:10.1016/j.envres.2015.06.039PMID 26164116.
  116. ^ Redling, Kerstin (2006). “Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry” (Dissertation). LMU München: Faculty of Veterinary Medicine. Retrieved April 5,2018.
  117. ^ “The Difference Engine: More precious than gold”The Economist September 17, 2010.
  118. ^ Barakos, G; Gutzmer, J; Mischo, H (2016). “Strategic evaluations and mining process optimization towards a strong global REE supply chain”Journal of Sustainable Mining15(1): 26–35. doi:10.1016/j.jsm.2016.05.002.
  119. ^ “Value Chain”Investopedia.
  120. ^ Dian L. Chu (November 11, 2010). “Seventeen Metals: ‘The Middle East has oil, China has rare earthBusiness Insider.
  121. ^ Cox, C. (November 16, 2006). “Rare earth innovation: the silent shift to China”. The Anchor House, Inc. Archived from the original on April 21, 2008. Retrieved February 29, 2008.
  122. ^ Bradsher, Keith (September 22, 2010). “Amid Tension, China Blocks Vital Exports to Japan”. The New York Times Company. Retrieved September 22, 2010.
  123. ^ James T. Areddy, David Fickling And Norihiko Shirouzu (September 23, 2010). “China Denies Halting Rare-Earth Exports to Japan”Wall Street Journal. Retrieved September 22, 2010.
  124. ^ Backlash over the alleged China curb on metal exportsDaily Telegraph, London, 29 Aug 2010. Retrieved 2010-08-30.
  125. ^ “Rare earths: Digging in” The Economist September 2, 2010.
  126. ^ Mills, Mark P. “Tech’s Mineral Infrastructure – Time to Emulate China’s Rare Earth Policies.” Forbes, 1 January 2010.
  127. ^ “US Geological Survey: China’s Rare-Earth Industry”. Journalist’s Resource.org. July 18, 2011.
  128. ^ Simpson, S. (October 2011). “Afghanistan’s Buried Riches”. Scientific American.
  129. Jump up to:a b Overland, Indra (March 1, 2019). “The geopolitics of renewable energy: Debunking four emerging myths”Energy Research & Social Science49: 36–40. doi:10.1016/j.erss.2018.10.018ISSN 2214-6296.




Cornish secures further funding to build lithium mine in UK