krebs cycle mitochondria citric acid cycle

The Krebs cycle, also known as the citric acid cycle is a set of chemical reactions which release stored energy through oxidation of acetyl-CoA. Precursors of certain amino acids, and the reducing agent NADH are also produced. The pathway name comes from a tricarboxylic acid, often called citrate.  Acetyl-CoA and water, reduces NAD+ to NADH, releasing CO2. The NADH is then fed into the oxidative phosphorylation pathway. The conclusion is the oxidation of nutrients to produce chemical energy, as ATP.

 

 

What is the Krebs cycle?

In the 1930s Szent-Györgyi, received the Nobel Prize in Physiology for his discovery of fumaric acid. The citric acid cycle was actually demonstrated in 1937 by Hans Adolf Krebs and William Arthur Johnson. The citric acid cycle starts with the transfer of a 2C acetyl group from acetyl-CoA to the 4C acceptor compound oxaloacetate to form citrate, a compound consisting of 6 carbons.

The citrate loses two carboxyl groups as CO2. The carbons lost as CO2 originate from oxaloacetate. The carbons become part of the oxaloacetate carbon structure. Electrons made by the oxidative steps are transferred to NAD+, producing NADH. For each acetyl group that enters the citric acid cycle, three molecules of NADH are output. 

Electrons from the succinate oxidation step are transferred first to the FAD, of succinate dehydrogenase, reducing it to FADH2. This ultimately reduces to ubiquinone (Q) in the mitochondrial membrane as ubiquinol (QH2). For every NADH and FADH2 created, 2.5 and 1.5 ATP molecules are generated in oxidative phosphorylation. At the close, the 4C oxaloacetate has been recreated, and the cycle progresses.

 

Citric acid cycle (Krebs cycle) steps

 

1 Citrate Synthase

The enzyme citrate synthase starts the cycle. The pyruvate dehydrogenase joins an acetyl group to coenzyme A. Citrate synthase removes the acetyl group, adding it to oxaloacetate, forming citric acid. The reaction is known as the aldol condensation, which is irreversible.
 

2 Aconitase

The second step transfers an oxygen atom to build the isocitrate molecule. This hydration/dehydration step is achieved by the Aconitase enzyme. This is an isomerisation reaction.
 

3 Isocitrate Dehydrogenase

Isocitrate dehydrogenase then removes one of the carbon atoms, forming carbon dioxide, transferring electrons to NADH. This is oxidation. Decarboxylation generates the 5C molecule.
 
 
 

4 α-Ketoglutarate dehydrogenase, Thiamine pyrophosphate,

Lipoic acid, Mg++,transsuccinytase

The oxidative decarboxylation is an irreversible stage which creates NADH and regenerates the 4C chain molecule.

 

 

5 Succinyl-CoA Synthetase

The bond between succinate and coenzyme A is unstable, releasing the energy needed to create a molecule of ATP. A substrate level phosphorylation reaction.
 
 

6 Succinate dehydrogenase

 

The sixth step involves a protein complex and it integrates directly to the electron transport chain. The enzyme removes hydrogen atoms from succinate, transferring them to the carrier FAD. With the help of several iron-sulfur clusters and a heme, these are then transferred to the mobile carrier ubiquinone. The two electrons transferred to QH2 during Complex II of the ETC, where they generate the equivalent of 1.5 ATP.
 
 

7 Fumarase

Fumarase is the enzyme in part seven, which adds a water to the molecule in preparation for the last stage. There is a hydration of the C-C double bond.

 

8 Malate Dehydrogenase

 

Finally, oxaloacetate is recreated, transferring electrons to NADH in the process. Malate dehydrogenase is found in both the mitochondrion and the cytoplasm. Instead, the two forms of malate dehydrogenase form part of a shuttle. In the cytoplasm, NADH is used up to convert oxaloacetate to malate. Malate is then transported into the mitochondrion and is used to recreate NADH by conversion of malate to oxaloacetate.


 

 

Krebs cycle products and efficiency

Products of the cycle are one GTP (or ATP), three NADH, one QH2 and two CO2. Two cycles are required per glucose molecule. Therefore, at the end of two cycles, the products are: two GTP, six NADH, two QH2, and four CO2. In total, between 30 and 38 ATP molecules obtained after complete oxidation of one glucose in glycolysis, citric acid cycle, and oxidative phosphorylation.

 

Recent category posts

References

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Modification to referenced work is licensed under the agreement.

  1.  Lowenstein JM (1969). Methods in Enzymology, Volume 13: Citric Acid Cycle. Boston: Academic Press. ISBN 978-0-12-181870-8.
  2. ^ Kay J, Weitzman PD (1987). Krebs’ citric acid cycle: half a century and still turning. London: Biochemical Society. pp. 25ISBN 978-0-904498-22-6.
  3. ^ Wagner, Andreas (2014). Arrival of the Fittest (first ed.). PenguinYork. p. 100. ISBN 9781591846468.
  4. ^ Lane, Nick (2009). Life Ascending: The Ten Great Inventions of Evolution. New York: W. W. Norton & Co. ISBN 978-0-393-06596-1.
  5. ^ Chinopoulos C (August 2013). “Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex” (PDF)Journal of Neuroscience Research91 (8): 1030–43. doi:10.1002/jnr.23196PMID 23378250.
  6. Jump up to:a b c Voet D, Voet JG (2004). Biochemistry (3rd ed.). New York: John Wiley & Sons, Inc. p. 615.
  7. ^ Lieberman, Michael (2013). Marks’ basic medical biochemistry : a clinical approach. Marks, Allan D., Peet, Alisa. (Fourth ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 9781608315727OCLC 769803483.
  8. ^ “The Nobel Prize in Physiology or Medicine 1937”. The Nobel Foundation. Retrieved 2011-10-26.
  9. ^ Chandramana, Sudeep. (2014). Inclusive Growth And Youth Empowerment: Adevelopment Model For Aspirational India. Journal of Science, Technology and Management. 7. 52–62.
  10. ^ Krebs HA, Johnson WA (April 1937). “Metabolism of ketonic acids in animal tissues”The Biochemical Journal31 (4): 645–60. doi:10.1042/bj0310645PMC 1266984PMID 16746382.
  11. ^ “The Nobel Prize in Physiology or Medicine 1953”. The Nobel Foundation. Retrieved 2011-10-26.
  12. ^ Wolfe RR, Jahoor F (February 1990). “Recovery of labeled CO2 during the infusion of C-1- vs C-2-labeled acetate: implications for tracer studies of substrate oxidation”. The American Journal of Clinical Nutrition51 (2): 248–52. doi:10.1093/ajcn/51.2.248PMID 2106256.
  13. ^ Berg JM, Tymoczko JL, Stryer L (2002). “The Citric Acid Cycle”. Biochemistry (5th ed.). W H Freeman. ISBN 0-7167-3051-0.
  14. Jump up to:a b Jones RC, Buchanan BB, Gruissem W (2000). Biochemistry & molecular biology of plants (1st ed.). Rockville, Md: American Society of Plant Physiologists. ISBN 978-0-943088-39-6.
  15. Jump up to:a b c d Stryer L, Berg J, Tymoczko JL (2002). Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3.
  16. ^ Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO (October 1998). “Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes”The Journal of Biological Chemistry273 (42): 27580–6. doi:10.1074/jbc.273.42.27580PMID 9765291.
  17. ^ Barnes SJ, Weitzman PD (June 1986). “Organization of citric acid cycle enzymes into a multienzyme cluster”. FEBS Letters201 (2): 267–70. doi:10.1016/0014-5793(86)80621-4PMID 3086126.
  18. Jump up to:a b Porter RK, Brand MD (September 1995). “Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes”The Biochemical Journal310 (2): 379–82. doi:10.1042/bj3100379PMC 1135905PMID 7654171.
  19. ^ Stryer L, Berg JM, Tymoczko JL (2002). “Section 18.6: The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP”Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3.
  20. ^ Rich PR (December 2003). “The molecular machinery of Keilin’s respiratory chain”. Biochemical Society Transactions31 (Pt 6): 1095–105. doi:10.1042/BST0311095PMID 14641005S2CID 32361233.
  21. ^ “Citric acid cycle variants at MetaCyc”.
  22. ^ Sahara T, Takada Y, Takeuchi Y, Yamaoka N, Fukunaga N (March 2002). “Cloning, sequencing, and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen-fixing bacterium, Azotobacter vinelandii”. Bioscience, Biotechnology, and Biochemistry66(3): 489–500. doi:10.1271/bbb.66.489PMID 12005040S2CID 12950388.
  23. ^ van der Rest ME, Frank C, Molenaar D (December 2000). “Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli”Journal of Bacteriology182(24): 6892–9. doi:10.1128/jb.182.24.6892-6899.2000PMC 94812PMID 11092847.
  24. ^ Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI (August 2004). “Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues”The Journal of Biological Chemistry279 (35): 36621–4. doi:10.1074/jbc.M406884200PMID 15234968.
  25. ^ Mullins EA, Francois JA, Kappock TJ (July 2008). “A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti”Journal of Bacteriology190 (14): 4933–40. doi:10.1128/JB.00405-08PMC 2447011PMID 18502856.
  26. ^ Corthésy-Theulaz IE, Bergonzelli GE, Henry H, Bachmann D, Schorderet DF, Blum AL, Ornston LN (October 1997). “Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family”The Journal of Biological Chemistry272 (41): 25659–67. doi:10.1074/jbc.272.41.25659PMID 9325289.
  27. ^ Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR (November 2009). “An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis”PLOS Pathogens5 (11): e1000662. doi:10.1371/journal.ppat.1000662PMC 2773412PMID 19936047.
  28. ^ Zhang S, Bryant DA (December 2011). “The tricarboxylic acid cycle in cyanobacteria”. Science334 (6062): 1551–3. doi:10.1126/science.1210858PMID 22174252.
  29. ^ Dang L, Su SM (June 2017). “Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development”. Annual Review of Biochemistry86 (1): 305–331. doi:10.1146/annurev-biochem-061516-044732PMID 28375741.
  30. ^ Yong C, Stewart GD, Frezza C (March 2020). “Oncometabolites in renal cancer”Nature Reviews. Nephrology16 (3): 156–172. doi:10.1038/s41581-019-0210-zPMC 7030949PMID 31636445.
  31. ^ Gelman SJ, Mahieu NG, Cho K, Llufrio EM, Wencewicz TA, Patti GJ (December 2015). “Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells”Cancer & Metabolism3 (1): 13. doi:10.1186/s40170-015-0139-zPMC 4665876PMID 26629338.
  32. ^ Rotili D, Mai A (June 2011). “Targeting Histone Demethylases: A New Avenue for the Fight against Cancer”Genes & Cancer2 (6): 663–79. doi:10.1177/1947601911417976PMC 3174264PMID 21941621.
  33. ^ Ivannikov MV, Macleod GT (June 2013). “Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals”Biophysical Journal104 (11): 2353–61. Bibcode:2013BpJ…104.2353Idoi:10.1016/j.bpj.2013.03.064PMC 3672877PMID 23746507.
  34. ^ Denton RM, Randle PJ, Bridges BJ, Cooper RH, Kerbey AL, Pask HT, et al. (October 1975). “Regulation of mammalian pyruvate dehydrogenase”. Molecular and Cellular Biochemistry9 (1): 27–53. doi:10.1007/BF01731731PMID 171557.
  35. ^ Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (February 2007). “Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF”The Journal of Biological Chemistry282 (7): 4524–32. doi:10.1074/jbc.M610415200PMID 17182618.
  36. Jump up to:a b c d e Voet, Donald; Judith G. Voet; Charlotte W. Pratt (2006). Fundamentals of Biochemistry, 2nd Edition. John Wiley and Sons, Inc. pp. 547, 556ISBN 978-0-471-21495-3.
  37. Jump up to:a b c d e f g h i j k l m n o Stryer, Lubert (1995). “Citric acid cycle”. In: Biochemistry (Fourth ed.). New York: W. H. Freeman and Company. pp. 509–527, 569–579, 614–616, 638–641, 732–735, 739–748, 770–773. ISBN 978-0-7167-2009-6.
  38. ^ Schmidt-Rohr K (2020). “Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics”ACS Omega5: 2221–2233. doi:10.1021/acsomega.9b03352PMC 7016920PMID 32064383.
  39. ^ Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed.). Belmont, CA: Brooks/Cole, Cengage Learning. pp. 623–625, 771–773. ISBN 9781133106296OCLC 777722371.
  40. ^ Halarnkar PP, Blomquist GJ (1989). “Comparative aspects of propionate metabolism”. Comparative Biochemistry and Physiology. B, Comparative Biochemistry92 (2): 227–31. doi:10.1016/0305-0491(89)90270-8PMID 2647392.
  41. ^ Ferré P, Foufelle F (2007). “SREBP-1c transcription factor and lipid homeostasis: clinical perspective”Hormone Research68 (2): 72–82. doi:10.1159/000100426PMID 17344645this process is outlined graphically in page 73
  42. ^ Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. (November 2017). “Glucose feeds the TCA cycle via circulating lactate”Nature551 (7678): 115–118. doi:10.1038/nature24057PMC 5898814PMID 29045397.
  43. ^ Gest H (1987). “Evolutionary roots of the citric acid cycle in prokaryotes”. Biochemical Society Symposium54: 3–16. PMID 3332996.
  44. ^ Meléndez-Hevia E, Waddell TG, Cascante M (September 1996). “The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution”. Journal of Molecular Evolution43 (3): 293–303. doi:10.1007/BF02338838PMID 8703096.
  45. ^ Ebenhöh O, Heinrich R (January 2001). “Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems”. Bulletin of Mathematical Biology63(1): 21–55. doi:10.1006/bulm.2000.0197PMID 11146883.