
The Krebs cycle, also known as the citric acid cycle is a set of chemical reactions which release stored energy through oxidation of acetyl-CoA. Precursors of certain amino acids, and the reducing agent NADH are also produced. The pathway name comes from a tricarboxylic acid, often called citrate. Acetyl-CoA and water, reduces NAD+ to NADH, releasing CO2. The NADH is then fed into the oxidative phosphorylation pathway. The conclusion is the oxidation of nutrients to produce chemical energy, as ATP.
What is the Krebs cycle?
In the 1930s Szent-Györgyi, received the Nobel Prize in Physiology for his discovery of fumaric acid. The citric acid cycle was actually demonstrated in 1937 by Hans Adolf Krebs and William Arthur Johnson. The citric acid cycle starts with the transfer of a 2C acetyl group from acetyl-CoA to the 4C acceptor compound oxaloacetate to form citrate, a compound consisting of 6 carbons.
The citrate loses two carboxyl groups as CO2. The carbons lost as CO2 originate from oxaloacetate. The carbons become part of the oxaloacetate carbon structure. Electrons made by the oxidative steps are transferred to NAD+, producing NADH. For each acetyl group that enters the citric acid cycle, three molecules of NADH are output.
Electrons from the succinate oxidation step are transferred first to the FAD, of succinate dehydrogenase, reducing it to FADH2. This ultimately reduces to ubiquinone (Q) in the mitochondrial membrane as ubiquinol (QH2). For every NADH and FADH2 created, 2.5 and 1.5 ATP molecules are generated in oxidative phosphorylation. At the close, the 4C oxaloacetate has been recreated, and the cycle progresses.
Citric acid cycle (Krebs cycle) steps
1 Citrate Synthase
2 Aconitase
3 Isocitrate Dehydrogenase
4 α-Ketoglutarate dehydrogenase, Thiamine pyrophosphate,
Lipoic acid, Mg++,transsuccinytase
The oxidative decarboxylation is an irreversible stage which creates NADH and regenerates the 4C chain molecule.
5 Succinyl-CoA Synthetase
6 Succinate dehydrogenase
7 Fumarase
8 Malate Dehydrogenase
Krebs cycle products and efficiency
Products of the cycle are one GTP (or ATP), three NADH, one QH2 and two CO2. Two cycles are required per glucose molecule. Therefore, at the end of two cycles, the products are: two GTP, six NADH, two QH2, and four CO2. In total, between 30 and 38 ATP molecules obtained after complete oxidation of one glucose in glycolysis, citric acid cycle, and oxidative phosphorylation.
Recent category posts
An antimicrobial is an agent that kills microorganisms or prevents their growth. They can be classified according to their...
The cholera pandemic is the longest running global pandemic. Cholera is an infection of the small intestine caused by the bacterium Vibrio cholerae....
The Human Genome Project was an international project aimed at discovering, identifying and mapping all of the genes of the human genome. The...
References
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Modification to referenced work is licensed under the agreement.
- Lowenstein JM (1969). Methods in Enzymology, Volume 13: Citric Acid Cycle. Boston: Academic Press. ISBN 978-0-12-181870-8.
- ^ Kay J, Weitzman PD (1987). Krebs’ citric acid cycle: half a century and still turning. London: Biochemical Society. pp. 25. ISBN 978-0-904498-22-6.
- ^ Wagner, Andreas (2014). Arrival of the Fittest (first ed.). PenguinYork. p. 100. ISBN 9781591846468.
- ^ Lane, Nick (2009). Life Ascending: The Ten Great Inventions of Evolution. New York: W. W. Norton & Co. ISBN 978-0-393-06596-1.
- ^ Chinopoulos C (August 2013). “Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex” (PDF). Journal of Neuroscience Research. 91 (8): 1030–43. doi:10.1002/jnr.23196. PMID 23378250.
- ^ Jump up to:a b c Voet D, Voet JG (2004). Biochemistry (3rd ed.). New York: John Wiley & Sons, Inc. p. 615.
- ^ Lieberman, Michael (2013). Marks’ basic medical biochemistry : a clinical approach. Marks, Allan D., Peet, Alisa. (Fourth ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 9781608315727. OCLC 769803483.
- ^ “The Nobel Prize in Physiology or Medicine 1937”. The Nobel Foundation. Retrieved 2011-10-26.
- ^ Chandramana, Sudeep. (2014). Inclusive Growth And Youth Empowerment: Adevelopment Model For Aspirational India. Journal of Science, Technology and Management. 7. 52–62.
- ^ Krebs HA, Johnson WA (April 1937). “Metabolism of ketonic acids in animal tissues”. The Biochemical Journal. 31 (4): 645–60. doi:10.1042/bj0310645. PMC 1266984. PMID 16746382.
- ^ “The Nobel Prize in Physiology or Medicine 1953”. The Nobel Foundation. Retrieved 2011-10-26.
- ^ Wolfe RR, Jahoor F (February 1990). “Recovery of labeled CO2 during the infusion of C-1- vs C-2-labeled acetate: implications for tracer studies of substrate oxidation”. The American Journal of Clinical Nutrition. 51 (2): 248–52. doi:10.1093/ajcn/51.2.248. PMID 2106256.
- ^ Berg JM, Tymoczko JL, Stryer L (2002). “The Citric Acid Cycle”. Biochemistry (5th ed.). W H Freeman. ISBN 0-7167-3051-0.
- ^ Jump up to:a b Jones RC, Buchanan BB, Gruissem W (2000). Biochemistry & molecular biology of plants (1st ed.). Rockville, Md: American Society of Plant Physiologists. ISBN 978-0-943088-39-6.
- ^ Jump up to:a b c d Stryer L, Berg J, Tymoczko JL (2002). Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3.
- ^ Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO (October 1998). “Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes”. The Journal of Biological Chemistry. 273 (42): 27580–6. doi:10.1074/jbc.273.42.27580. PMID 9765291.
- ^ Barnes SJ, Weitzman PD (June 1986). “Organization of citric acid cycle enzymes into a multienzyme cluster”. FEBS Letters. 201 (2): 267–70. doi:10.1016/0014-5793(86)80621-4. PMID 3086126.
- ^ Jump up to:a b Porter RK, Brand MD (September 1995). “Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes”. The Biochemical Journal. 310 (2): 379–82. doi:10.1042/bj3100379. PMC 1135905. PMID 7654171.
- ^ Stryer L, Berg JM, Tymoczko JL (2002). “Section 18.6: The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP”. Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3.
- ^ Rich PR (December 2003). “The molecular machinery of Keilin’s respiratory chain”. Biochemical Society Transactions. 31 (Pt 6): 1095–105. doi:10.1042/BST0311095. PMID 14641005. S2CID 32361233.
- ^ “Citric acid cycle variants at MetaCyc”.
- ^ Sahara T, Takada Y, Takeuchi Y, Yamaoka N, Fukunaga N (March 2002). “Cloning, sequencing, and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen-fixing bacterium, Azotobacter vinelandii”. Bioscience, Biotechnology, and Biochemistry. 66(3): 489–500. doi:10.1271/bbb.66.489. PMID 12005040. S2CID 12950388.
- ^ van der Rest ME, Frank C, Molenaar D (December 2000). “Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli”. Journal of Bacteriology. 182(24): 6892–9. doi:10.1128/jb.182.24.6892-6899.2000. PMC 94812. PMID 11092847.
- ^ Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI (August 2004). “Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues”. The Journal of Biological Chemistry. 279 (35): 36621–4. doi:10.1074/jbc.M406884200. PMID 15234968.
- ^ Mullins EA, Francois JA, Kappock TJ (July 2008). “A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti”. Journal of Bacteriology. 190 (14): 4933–40. doi:10.1128/JB.00405-08. PMC 2447011. PMID 18502856.
- ^ Corthésy-Theulaz IE, Bergonzelli GE, Henry H, Bachmann D, Schorderet DF, Blum AL, Ornston LN (October 1997). “Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family”. The Journal of Biological Chemistry. 272 (41): 25659–67. doi:10.1074/jbc.272.41.25659. PMID 9325289.
- ^ Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR (November 2009). “An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis”. PLOS Pathogens. 5 (11): e1000662. doi:10.1371/journal.ppat.1000662. PMC 2773412. PMID 19936047.
- ^ Zhang S, Bryant DA (December 2011). “The tricarboxylic acid cycle in cyanobacteria”. Science. 334 (6062): 1551–3. doi:10.1126/science.1210858. PMID 22174252.
- ^ Dang L, Su SM (June 2017). “Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development”. Annual Review of Biochemistry. 86 (1): 305–331. doi:10.1146/annurev-biochem-061516-044732. PMID 28375741.
- ^ Yong C, Stewart GD, Frezza C (March 2020). “Oncometabolites in renal cancer”. Nature Reviews. Nephrology. 16 (3): 156–172. doi:10.1038/s41581-019-0210-z. PMC 7030949. PMID 31636445.
- ^ Gelman SJ, Mahieu NG, Cho K, Llufrio EM, Wencewicz TA, Patti GJ (December 2015). “Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells”. Cancer & Metabolism. 3 (1): 13. doi:10.1186/s40170-015-0139-z. PMC 4665876. PMID 26629338.
- ^ Rotili D, Mai A (June 2011). “Targeting Histone Demethylases: A New Avenue for the Fight against Cancer”. Genes & Cancer. 2 (6): 663–79. doi:10.1177/1947601911417976. PMC 3174264. PMID 21941621.
- ^ Ivannikov MV, Macleod GT (June 2013). “Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals”. Biophysical Journal. 104 (11): 2353–61. Bibcode:2013BpJ…104.2353I. doi:10.1016/j.bpj.2013.03.064. PMC 3672877. PMID 23746507.
- ^ Denton RM, Randle PJ, Bridges BJ, Cooper RH, Kerbey AL, Pask HT, et al. (October 1975). “Regulation of mammalian pyruvate dehydrogenase”. Molecular and Cellular Biochemistry. 9 (1): 27–53. doi:10.1007/BF01731731. PMID 171557.
- ^ Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (February 2007). “Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF”. The Journal of Biological Chemistry. 282 (7): 4524–32. doi:10.1074/jbc.M610415200. PMID 17182618.
- ^ Jump up to:a b c d e Voet, Donald; Judith G. Voet; Charlotte W. Pratt (2006). Fundamentals of Biochemistry, 2nd Edition. John Wiley and Sons, Inc. pp. 547, 556. ISBN 978-0-471-21495-3.
- ^ Jump up to:a b c d e f g h i j k l m n o Stryer, Lubert (1995). “Citric acid cycle”. In: Biochemistry (Fourth ed.). New York: W. H. Freeman and Company. pp. 509–527, 569–579, 614–616, 638–641, 732–735, 739–748, 770–773. ISBN 978-0-7167-2009-6.
- ^ Schmidt-Rohr K (2020). “Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics”. ACS Omega. 5: 2221–2233. doi:10.1021/acsomega.9b03352. PMC 7016920. PMID 32064383.
- ^ Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed.). Belmont, CA: Brooks/Cole, Cengage Learning. pp. 623–625, 771–773. ISBN 9781133106296. OCLC 777722371.
- ^ Halarnkar PP, Blomquist GJ (1989). “Comparative aspects of propionate metabolism”. Comparative Biochemistry and Physiology. B, Comparative Biochemistry. 92 (2): 227–31. doi:10.1016/0305-0491(89)90270-8. PMID 2647392.
- ^ Ferré P, Foufelle F (2007). “SREBP-1c transcription factor and lipid homeostasis: clinical perspective”. Hormone Research. 68 (2): 72–82. doi:10.1159/000100426. PMID 17344645.
this process is outlined graphically in page 73
- ^ Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. (November 2017). “Glucose feeds the TCA cycle via circulating lactate”. Nature. 551 (7678): 115–118. doi:10.1038/nature24057. PMC 5898814. PMID 29045397.
- ^ Gest H (1987). “Evolutionary roots of the citric acid cycle in prokaryotes”. Biochemical Society Symposium. 54: 3–16. PMID 3332996.
- ^ Meléndez-Hevia E, Waddell TG, Cascante M (September 1996). “The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution”. Journal of Molecular Evolution. 43 (3): 293–303. doi:10.1007/BF02338838. PMID 8703096.
- ^ Ebenhöh O, Heinrich R (January 2001). “Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems”. Bulletin of Mathematical Biology. 63(1): 21–55. doi:10.1006/bulm.2000.0197. PMID 11146883.