graphene battery

A graphene battery (correctly denoted as a silicon-graphene anode lithium ion battery) was first shown in 2012. Graphene is used to help overcome previous battery limitations, leading to increased performance and longevity. Graphene works in electrodes as a support or a composite/hybrid and helps to keep metal ions in a regular order, increasing electrode efficiency. As a composite material its high conductivity and well-ordered structure are unique and very desirable. Researchers built a lithium-ion battery made of graphene and silicon, which was claimed to last over a week and took only 15 minutes to charge.

 

What is a graphene battery?

Lithium ion cycling has been demonstrated in bi-layer graphene films, built upon nickel substrates, while single layer graphene films have been demonstrated as a protective layer against corrosion. This creates possibilities for flexible electrodes for microscale Li-ion batteries, where the anode acts as the active material.

 

Graphene battery properties

In 2015 argon-ion based plasma processing was used to bombard graphene samples, enhancing the capacitance three-fold. In 2016, Huawei announced graphene-assisted Lithium-Ion batteries with greater heat tolerance and twice the life span of existing technologies.

Graphene production methods

There are two main methods of graphene production, split into chemical vapour deposition and exfoliation from graphite. The first produces a single layer of graphene on a substrate, thought of as the best grade of graphene but it is also much more expensive and liberated in lower yields. This grade is often appropriate for the electronics industry. The second method convert graphite into graphene. Highly corrosive chemicals, mechanical stress and high temperatures play a role in this process. The variation of product is less consistent, a lower-quality type of graphene but manufactured at a smaller cost and in contrast to vapour deposition, the scale of output is much greater.

 

Graphene hybrids

Graphite has been used as part of the cathode material traditionally. The large surface area facilitates li+ ions to be captured via surface adsorption and induced bonding. Graphene electrodes also have a high conductivity. Classically, metal oxides have a low conductivity and low volumetric energy density. A hybrid of a metal oxide with graphene facilitates the conductivity as the interaction between the interstitial ions and the hybrid matrix is much more efficient.

 

Graphene battery research in cars

There are tremendous challenges in utilising graphene in the automotive landscape. Primarily, the density challenges that impact the safety and strength of lithium batteries in EVs. Degradation of the batteries is a real world issue. Samsung is working on a graphene ball battery that could vastly reduce charging times. Also, developments in Spain, via a company called Earthdas, show developments of a graphene battery that charges motorcycles/bikes.

 

 

Thermal management

In 2011, researchers found that a multilayer graphene architecture can be an approach for thermal interfacial materials (TIMs) with superior thermal conductivity and ultra-low interfacial thermal resistance. Graphene-metal composites can be used.

Adding a layer of graphene to each side of a copper film increased the heat-conducting properties. They could realistically be used for semiconductor interconnects. The improvement is the result of changes in copper’s nano- and microstructure.

 

Graphene as a supercapacitor

Due to graphene’s high surface-area-to-mass ratio, another related application is in the conductive plates of supercapacitors. In February 2013 researchers announced a novel technique to produce graphene supercapacitors based on the DVD burner reduction approach. A supercapacitor was later produced that was claimed to achieve energy density comparable to current lithium-ion batteries.

In 2015 laser-induced graphene was produced. The sections were then stacked, separated by solid electrolytes, making multiple micro-supercapacitors. The stacked configuration increased the energy density. The resulting devices were mechanically flexible, making them potentially suitable for rolling in a cylindrical configuration.

Micro-supercapacitors

In 2015, a micro-supercapacitor created suitable for use in a wearable device. It is capable of holding more than twice as much charge as a comparable thin-film lithium battery. The design employed laser-scribed graphene with manganese dioxide. Their capacity is six times that of commercially available supercapacitors.

 

Graphene fuel cells

Perforated graphene offers the potential for using graphene monolayers as a barrier that blocks hydrogen atoms but not protons/ionised hydrogen. The membranes are more efficient when covered with catalytic nanoparticles such as platinum.

Graphene would eliminate fuel crossover, which reduces efficiency and durability. In methanol fuel cells, graphene has reduced fuel cross over with negligible proton resistance. Proton conductivity with monolayer hBN, outperforms graphene, with resistivity to proton flow of about 10 Ω cm2.  At higher temperatures graphene outperforms with resistivity estimated to fall below 10−3 Ω cm2 above 250 degrees Celsius.

 

Recent category posts

References

  1.  “graphene definition, meaning – what is graphene in the British English Dictionary & Thesaurus – Cambridge Dictionaries Online”cambridge.org.
  2. Jump up to:a b c d e f g h i j k l m n o Geim, A. K.; Novoselov, K. S. (26 February 2007). “The rise of graphene”. Nature Materials6 (3): 183–191. arXiv:cond-mat/0702595Bibcode:2007NatMa…6..183Gdoi:10.1038/nmat1849PMID 17330084S2CID 14647602.
  3. ^ Peres, N. M. R.; Ribeiro, R. M. (2009). “Focus on Graphene”New Journal of Physics11 (9): 095002. Bibcode:2009NJPh…11i5002Pdoi:10.1088/1367-2630/11/9/095002.
  4. Jump up to:a b Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U. (1 July 1962). “Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien”. Zeitschrift für Anorganische und Allgemeine Chemie316 (3–4): 119–127. doi:10.1002/zaac.19623160303ISSN 1521-3749.
  5. ^ Boehm, H. P.; Setton, R.; Stumpp, E. (1994). “Nomenclature and terminology of graphite intercalation compounds” (PDF)Pure and Applied Chemistry66 (9): 1893–1901. doi:10.1351/pac199466091893S2CID 98227391. Archived from the original (PDF) on 6 April 2012.
  6. ^ Aristides D. Zdetsis and E. N. Economou (2015): “A pedestrian approach to the aromaticity of graphene and nanographene: Significance of Huckel’s (4n+2)π electron rule”. Journal of Physical Chemistry – Series C, volume 119, issue 29, pages 16991–17003. doi:10.1021/acs.jpcc.5b04311
  7. Jump up to:a b Peter J. F. Harris (2018): “Transmission electron microscopy of carbon: A brief history”. C – Journal of Carbon Research, volume 4, issue 1, article 4 (17 pages). doi:10.3390/c4010004
  8. ^ Li, Zhilin; Chen, Lianlian; Meng, Sheng; Guo, Liwei; Huang, Jiao; Liu, Yu; Wang, Wenjun; Chen, Xiaolong (2015). “Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment”. Phys. Rev. B91 (9): 094429. Bibcode:2015PhRvB..91i4429Ldoi:10.1103/PhysRevB.91.094429S2CID 55246344.
  9. Jump up to:a b c d Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. (6 June 2008). “Fine Structure Constant Defines Visual Transparency of Graphene”. Science320 (5881): 1308. arXiv:0803.3718Bibcode:2008Sci…320.1308Ndoi:10.1126/science.1156965PMID 18388259S2CID 3024573.
  10. Jump up to:a b c Zhu, Shou-En; Yuan, Shengjun; Janssen, G. C. A. M. (1 October 2014). “Optical transmittance of multilayer graphene”. EPL108 (1): 17007. arXiv:1409.4664Bibcode:2014EL….10817007Zdoi:10.1209/0295-5075/108/17007S2CID 73626659.
  11. Jump up to:a b Lee, Changgu (2008). “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science321 (385): 385–388. Bibcode:2008Sci…321..385Ldoi:10.1126/science.1157996PMID 18635798S2CID 206512830.
  12. Jump up to:a b Cao, K. (2020). “Elastic straining of free-standing monolayer graphene”Nature Communications11 (284): 284. Bibcode:2020NatCo..11..284Cdoi:10.1038/s41467-019-14130-0PMC 6962388PMID 31941941.
  13. Jump up to:a b Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. (22 October 2004). “Electric Field Effect in Atomically Thin Carbon Films”. Science306 (5696): 666–669. arXiv:cond-mat/0410550Bibcode:2004Sci…306..666Ndoi:10.1126/science.1102896ISSN 0036-8075PMID 15499015S2CID 5729649.
  14. Jump up to:a b “This Month in Physics History: October 22, 2004: Discovery of Graphene”APS News. Series II. 18 (9): 2. 2009.
  15. Jump up to:a b c Niaraki Asli, Amir Ehsan; Guo, Jingshuai; Lai, Pei Lun; Montazami, Reza; Hashemi, Nicole N. (January 2020). “High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns”Biosensors10 (1): 6. doi:10.3390/bios10010006PMC 7167870PMID 31963492.
  16. ^ Li, Dan; Müller, Marc B.; Gilje, Scott; Kaner, Richard B.; Wallace, Gordon G. (February 2008). “Processable aqueous dispersions of graphene nanosheets”Nature Nanotechnology3 (2): 101–105. doi:10.1038/nnano.2007.451ISSN 1748-3395.
  17. Jump up to:a b c Guo, Jingshuai; Niaraki Asli, Amir Ehsan; Williams, Kelli R.; Lai, Pei Lun; Wang, Xinwei; Montazami, Reza; Hashemi, Nicole N. (December 2019). “Viability of Neural Cells on 3D Printed Graphene Bioelectronics”Biosensors9 (4): 112. doi:10.3390/bios9040112PMC 6955934PMID 31547138.
  18. ^ McNamara, Marilyn C.; Niaraki-Asli, Amir Ehsan; Guo, Jingshuai; Okuzono, Jasmin; Montazami, Reza; Hashemi, Nicole N. (2020). “Enhancing the Conductivity of Cell-Laden Alginate Microfibers With Aqueous Graphene for Neural Applications”Frontiers in Materials7doi:10.3389/fmats.2020.00061ISSN 2296-8016.
  19. ^ “Global Demand for Graphene after Commercial Production to be Enormous, says Report”. AZONANO.com. 28 February 2014. Retrieved 24 July 2014.
  20. ^ Mrmak, Nebojsa (28 November 2014). “Graphene properties (A Complete Reference)”Graphene-Battery.net. Retrieved 10 November2019.
  21. ^ “Global Graphene Market Size is Expected to Reach $151.4 Million and Register a CAGR of 47.7% by 2021, Market Trends, Growth & Forecast – Valuates Report”PR Newswire. Cision. 25 November 2019. Retrieved 29 January 2020.
  22. ^ “graphene layer”IUPAC Compendium of Chemical Terminology. International Union of Pure and Applied Chemistry. 2009. doi:10.1351/goldbook.G02683ISBN 978-0-9678550-9-7. Retrieved 31 March 2012.
  23. Jump up to:a b Geim, A. (2009). “Graphene: Status and Prospects”. Science324(5934): 1530–4. arXiv:0906.3799Bibcode:2009Sci…324.1530Gdoi:10.1126/science.1158877PMID 19541989S2CID 206513254.
  24. ^ Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. (2009). “Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation”. Physical Review Letters103 (24): 246804. arXiv:0911.1953Bibcode:2009PhRvL.103x6804Rdoi:10.1103/PhysRevLett.103.246804PMID 20366220S2CID 33832203.
  25. ^ Geim, A. K. (2012). “Graphene Prehistory”Physica ScriptaT146: 014003. Bibcode:2012PhST..146a4003Gdoi:10.1088/0031-8949/2012/T146/014003.
  26. ^ Brodie, B. C. (1859). “On the Atomic Weight of Graphite”Philosophical Transactions of the Royal Society of London149: 249–259. Bibcode:1859RSPT..149..249Bdoi:10.1098/rstl.1859.0013JSTOR 108699.
  27. ^ Debije, P; Scherrer, P (1916). “Interferenz an regellos orientierten Teilchen im Röntgenlicht I”Physikalische Zeitschrift (in German). 17: 277.
  28. ^ Friedrich, W (1913). “Eine neue Interferenzerscheinung bei Röntgenstrahlen”. Physikalische Zeitschrift (in German). 14: 317.>
  29. ^ Hull, AW (1917). “A New Method of X-ray Crystal Analysis”. Phys. Rev10 (6): 661–696. Bibcode:1917PhRv…10..661Hdoi:10.1103/PhysRev.10.661.
  30. ^ Kohlschütter, V.; Haenni, P. (1919). “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure”Zeitschrift für anorganische und allgemeine Chemie (in German). 105 (1): 121–144. doi:10.1002/zaac.19191050109.
  31. ^ Bernal, JD (1924). “The Structure of Graphite”Proc. R. Soc. LondA106 (740): 749–773. Bibcode:1924RSPSA.106..749Bdoi:10.1098/rspa.1924.0101JSTOR 94336.
  32. ^ Hassel, O; Mack, H (1924). “Über die Kristallstruktur des Graphits”. Zeitschrift für Physik (in German). 25 (1): 317–337. Bibcode:1924ZPhy…25..317Hdoi:10.1007/BF01327534S2CID 121157442.
  33. ^ DiVincenzo, D. P.; Mele, E. J. (1984). “Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds”. Physical Review B295 (4): 1685–1694. Bibcode:1984PhRvB..29.1685Ddoi:10.1103/PhysRevB.29.1685.
  34. Jump up to:a b c d e f Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. (2005). “Two-dimensional gas of massless Dirac fermions in graphene”. Nature438 (7065): 197–200. arXiv:cond-mat/0509330Bibcode:2005Natur.438..197Ndoi:10.1038/nature04233PMID 16281030S2CID 3470761.
  35. Jump up to:a b Gusynin, V. P.; Sharapov, S. G. (2005). “Unconventional Integer Quantum Hall Effect in Graphene”. Physical Review Letters95 (14): 146801. arXiv:cond-mat/0506575Bibcode:2005PhRvL..95n6801Gdoi:10.1103/PhysRevLett.95.146801PMID 16241680S2CID 37267733.
  36. Jump up to:a b c Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. (2005). “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”. Nature438 (7065): 201–204. arXiv:cond-mat/0509355Bibcode:2005Natur.438..201Zdoi:10.1038/nature04235PMID 16281031S2CID 4424714.
  37. ^ Ruess, G.; Vogt, F. (1948). “Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd”. Monatshefte für Chemie (in German). 78 (3–4): 222–242. doi:10.1007/BF01141527.
  38. Jump up to:a b c d Meyer, J.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. (2007). “The structure of suspended graphene sheets”. Nature446 (7131): 60–63. arXiv:cond-mat/0701379Bibcode:2007Natur.446…60Mdoi:10.1038/nature05545PMID 17330039S2CID 3507167.
  39. ^ Boehm, H. P.; Clauss, A.; Fischer, G.; Hofmann, U. (1962). “Surface Properties of Extremely Thin Graphite Lamellae” (PDF)Proceedings of the Fifth Conference on CarbonPergamon Press.
  40. ^ Oshima, C.; Nagashima, A. (1997). “Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces”. J. Phys.: Condens. Matter9 (1): 1–20. Bibcode:1997JPCM….9….1Odoi:10.1088/0953-8984/9/1/004.
  41. ^ Forbeaux, I.; Themlin, J.-M.; Debever, J.-M. (1998). “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure”. Physical Review B58 (24): 16396–16406. Bibcode:1998PhRvB..5816396Fdoi:10.1103/PhysRevB.58.16396.
  42. ^ Mouras, S.; et al. (1987). “Synthesis of first stage graphite intercalation compounds with fluorides”Revue de Chimie Minérale24: 572.
  43. ^ Saito, R.; Fujita, Mitsutaka; Dresselhaus, G.; Dresselhaus, M. (1992). “Electronic structure of graphene tubules based on C60”. Physical Review B46 (3): 1804–1811. Bibcode:1992PhRvB..46.1804Sdoi:10.1103/PhysRevB.46.1804PMID 10003828.
  44. ^ Wang, S.; Yata, S.; Nagano, J.; Okano, Y.; Kinoshita, H.; Kikuta, H.; Yamabe, T. (2000). “A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries”. Journal of the Electrochemical Society147 (7): 2498. Bibcode:2000JElS..147.2498Wdoi:10.1149/1.1393559.
  45. ^ Geim, A. K.; Kim, P. (April 2008). “Carbon Wonderland”Scientific American… bits of graphene are undoubtedly present in every pencil mark
  46. ^ Robert B. Rutherford and Richard L. Dudman (2002): “Ultra-thin flexible expanded graphite heating element“. US Patent 6667100. Filed on 2002-05-13, granted on 2003-12-23, assigned to EGC Operating Co LLC; expired.
  47. ^ Bor Z. Jang and Wen C. Huang (2002): “Nano-scaled graphene plates“. US Patent 7071258. Filed on 2002-10-21, granted on 2006-07-04, assigned to Global Graphene Group Inc; to expire on 2024-01-06.
  48. Jump up to:a b “The Story of Graphene”www.graphene.manchester.ac.uk. The University of Manchester. 10 September 2014. Retrieved 9 October2014Following discussions with colleagues, Andre and Kostya adopted a method that researchers in surface science were using – using simple Sellotape to peel away layers of graphite to expose a clean surface for study under the microscope.
  49. ^ “Graphene pioneers bag Nobel prize”Institute of Physics, UK. 5 October 2010.
  50. ^ “The Nobel Prize in Physics 2010”The Nobel Foundation. Retrieved 3 December 2013.
  51. ^ “New £60m Engineering Innovation Centre to be based in Manchester”www.graphene.manchester.ac.uk. The University of Manchester. 10 September 2014. Archived from the original on 9 October 2014. Retrieved 9 October 2014.
  52. ^ Burn-Callander, Rebecca (1 July 2014). “Graphene maker aims to build British, billion-pound venture”Daily Telegraph. Retrieved 24 July 2014.
  53. ^ Gibson, Robert (10 June 2014). “Consett firm Thomas Swan sees export success with grapheme”. The Journal. Retrieved 23 July 2014.
  54. ^ “Global breakthrough: Irish scientists discover how to mass produce ‘wonder material’ graphene”. The Journal.ie. 20 April 2014. Retrieved 20 December 2014.
  55. ^ “Cambridge Nanosystems opens new factory for commercial graphene production”Cambridge News. Archived from the original on 23 September 2015.
  56. ^ Heyrovska, Raji (2008). “Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon”. arXiv:0804.4086 [physics.gen-ph].
  57. Jump up to:a b c d e Cooper, Daniel R.; D’Anjou, Benjamin; Ghattamaneni, Nageswara; Harack, Benjamin; Hilke, Michael; Horth, Alexandre; Majlis, Norberto; Massicotte, Mathieu; Vandsburger, Leron; Whiteway, Eric; Yu, Victor (3 November 2011). “Experimental Review of Graphene” (PDF)ISRN Condensed Matter Physics. International Scholarly Research Network. 2012: 1–56. arXiv:1110.6557Bibcode:2011arXiv1110.6557Cdoi:10.5402/2012/501686S2CID 78304205. Retrieved 30 August 2016.
  58. ^ Felix, I. M. (2013). “Study of the electronic structure of graphene and hydrated graphene”.
  59. ^ Dixit, Vaibhav A.; Singh, Yashita Y. (June 2019). “How much aromatic are naphthalene and graphene?”. Computational and Theoretical Chemistry1162: 112504. doi:10.1016/j.comptc.2019.112504.
  60. ^ Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F.; Iijima, S. (2002). “Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism”. J. Phys. Chem. B106 (19): 4947–4951. doi:10.1021/jp020387n.
  61. ^ Bernatowicz; T. J.; et al. (1996). “Constraints on stellar grain formation from presolar graphite in the Murchison meteorite”Astrophysical Journal472 (2): 760–782. Bibcode:1996ApJ…472..760Bdoi:10.1086/178105.
  62. ^ Fraundorf, P.; Wackenhut, M. (2002). “The core structure of presolar graphite onions”. Astrophysical Journal Letters578 (2): L153–156. arXiv:astro-ph/0110585Bibcode:2002ApJ…578L.153Fdoi:10.1086/344633S2CID 15066112.
  63. Jump up to:a b Carlsson, J. M. (2007). “Graphene: Buckle or break”. Nature Materials6 (11): 801–2. Bibcode:2007NatMa…6..801Cdoi:10.1038/nmat2051hdl:11858/00-001M-0000-0010-FF61-1PMID 17972931.
  64. Jump up to:a b Fasolino, A.; Los, J. H.; Katsnelson, M. I. (2007). “Intrinsic ripples in graphene”. Nature Materials6 (11): 858–61. arXiv:0704.1793Bibcode:2007NatMa…6..858Fdoi:10.1038/nmat2011PMID 17891144S2CID 38264967.
  65. Jump up to:a b Ishigami, Masa; et al. (2007). “Atomic Structure of Graphene on SiO2“. Nano Letters7 (6): 1643–1648. arXiv:0811.0587Bibcode:2007NanoL…7.1643Idoi:10.1021/nl070613aPMID 17497819S2CID 13087073.
  66. ^ O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner (2006): “Carbon nanostructures”. Critical Reviews in Solid State and Materials Sciences, volume 27, issues 3-4, pages 227-356. Quote: “graphene is the least stable structure until about 6000 atoms”. doi:10.1080/10408430208500497 Bibcode:2002CRSSM..27..227S
  67. Jump up to:a b c d Neto, A Castro; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.; Geim, A. K. (2009). “The electronic properties of graphene” (PDF)Rev Mod Phys81 (1): 109–162. arXiv:0709.1163Bibcode:2009RvMP…81..109Cdoi:10.1103/RevModPhys.81.109hdl:10261/18097S2CID 5650871. Archived from the original(PDF) on 15 November 2010.
  68. Jump up to:a b c d Charlier, J.-C.; Eklund, P.C.; Zhu, J.; Ferrari, A.C. (2008). Jorio, A.; Dresselhaus and, G.; Dresselhaus, M.S. (eds.). Electron and Phonon Properties of Graphene: Their Relationship with Carbon NanotubesCarbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Berlin/Heidelberg: Springer-Verlag.
  69. ^ Kopelevich, Y.; Torres, J.; Da Silva, R.; Mrowka, F.; Kempa, H.; Esquinazi, P. (2003). “Reentrant Metallic Behavior of Graphite in the Quantum Limit”. Physical Review Letters90 (15): 156402. arXiv:cond-mat/0209406Bibcode:2003PhRvL..90o6402Kdoi:10.1103/PhysRevLett.90.156402PMID 12732058S2CID 26968734.
  70. ^ Luk’yanchuk, Igor A.; Kopelevich, Yakov (2004). “Phase Analysis of Quantum Oscillations in Graphite”. Physical Review Letters93 (16): 166402. arXiv:cond-mat/0402058Bibcode:2004PhRvL..93p6402Ldoi:10.1103/PhysRevLett.93.166402PMID 15525015S2CID 17130602.
  71. Jump up to:a b c d e Semenoff, G. W. (1984). “Condensed-Matter Simulation of a Three-Dimensional Anomaly”. Physical Review Letters53 (26): 2449–2452. Bibcode:1984PhRvL..53.2449Sdoi:10.1103/PhysRevLett.53.2449.
  72. ^ Wallace, P.R. (1947). “The Band Theory of Graphite”. Physical Review71 (9): 622–634. Bibcode:1947PhRv…71..622Wdoi:10.1103/PhysRev.71.622S2CID 53633968.
  73. Jump up to:a b Avouris, P.; Chen, Z.; Perebeinos, V. (2007). “Carbon-based electronics”. Nature Nanotechnology2 (10): 605–15. Bibcode:2007NatNa…2..605Adoi:10.1038/nnano.2007.300PMID 18654384.
  74. ^ Lamas, C.A.; Cabra, D.C.; Grandi, N. (2009). “Generalized Pomeranchuk instabilities in graphene”. Physical Review B80 (7): 75108. arXiv:0812.4406Bibcode:2009PhRvB..80g5108Ldoi:10.1103/PhysRevB.80.075108S2CID 119213419.
  75. ^ Morozov, S.V.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.; Geim, A. (2008). “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”. Physical Review Letters100 (1): 016602. arXiv:0710.5304Bibcode:2008PhRvL.100a6602Mdoi:10.1103/PhysRevLett.100.016602PMID 18232798S2CID 3543049.
  76. Jump up to:a b c Chen, J. H.; Jang, Chaun; Xiao, Shudong; Ishigami, Masa; Fuhrer, Michael S. (2008). “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO
    2
    “. Nature Nanotechnology3 (4): 206–9. arXiv:0711.3646doi:10.1038/nnano.2008.58PMID 18654504S2CID 12221376.
  77. ^ Akturk, A.; Goldsman, N. (2008). “Electron transport and full-band electron–phonon interactions in graphene”. Journal of Applied Physics103 (5): 053702–053702–8. Bibcode:2008JAP…103e3702Adoi:10.1063/1.2890147.
  78. ^ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene :: University Communications Newsdesk, University of Maryland Archived 19 September 2013 at the Wayback Machine. Newsdesk.umd.edu (24 March 2008). Retrieved on 2014-01-12.
  79. ^ Sagade, A. A.; et al. (2015). “Highly Air Stable Passivation of Graphene Based Field Effect Devices”. Nanoscale7 (8): 3558–3564. Bibcode:2015Nanos…7.3558Sdoi:10.1039/c4nr07457bPMID 25631337S2CID 24846431.
  80. ^ “Graphene Devices Stand the Test of Time”. 22 January 2015.
  81. ^ “Researchers create superconducting graphene”. 9 September 2015. Retrieved 22 September 2015.
  82. Jump up to:a b “New form of graphene allows electrons to behave like photons”kurzweilai.net.
  83. ^ Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A. P.; Jiang, Z.; Conrad, E. H.; Berger, C.; Tegenkamp, C.; De Heer, W. A. (2014). “Exceptional ballistic transport in epitaxial graphene nanoribbons”. Nature506 (7488): 349–354. arXiv:1301.5354Bibcode:2014Natur.506..349Bdoi:10.1038/nature12952PMID 24499819S2CID 4445858.
  84. Jump up to:a b c Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. (2008). “Charged Impurity Scattering in Graphene”. Nature Physics4 (5): 377–381. arXiv:0708.2408Bibcode:2008NatPh…4..377Cdoi:10.1038/nphys935S2CID 53419753.
  85. ^ Light pulses control how graphene conducts electricity. kurzweilai.net. 4 August 2014
  86. Jump up to:a b Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. (2007). “Detection of individual gas molecules adsorbed on graphene”. Nature Materials6 (9): 652–655. arXiv:cond-mat/0610809Bibcode:2007NatMa…6..652Sdoi:10.1038/nmat1967PMID 17660825S2CID 3518448.
  87. ^ Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. (2007). “A self-consistent theory for graphene transport”Proc. Natl. Acad. Sci. USA104 (47): 18392–7. arXiv:0705.1540Bibcode:2007PNAS..10418392Adoi:10.1073/pnas.0704772104PMC 2141788PMID 18003926.
  88. ^ Steinberg, Hadar; Barak, Gilad; Yacoby, Amir; et al. (2008). “Charge fractionalization in quantum wires (Letter)”. Nature Physics4 (2): 116–119. arXiv:0803.0744Bibcode:2008NatPh…4..116Sdoi:10.1038/nphys810S2CID 14581125.
  89. ^ Trisetyarso, Agung (2012). “Dirac four-potential tunings-based quantum transistor utilizing the Lorentz force”Quantum Information & Computation12 (11–12): 989. arXiv:1003.4590Bibcode:2010arXiv1003.4590T.
  90. ^ Pachos, Jiannis K. (2009). “Manifestations of topological effects in graphene”. Contemporary Physics50 (2): 375–389. arXiv:0812.1116Bibcode:2009ConPh..50..375Pdoi:10.1080/00107510802650507S2CID 8825103.
    Franz, M. (5 January 2008). “Fractionalization of charge and statistics in graphene and related structures” (PDF). University of British Columbia.
  91. ^ Peres, N. M. R. (15 September 2010). “Colloquium: The transport properties of graphene: An introduction”. Reviews of Modern Physics82(3): 2673–2700. arXiv:1007.2849Bibcode:2010RvMP…82.2673Pdoi:10.1103/RevModPhys.82.2673ISSN 0034-6861S2CID 118585778.
  92. ^ Kim, Kuen Soo; Zhao, Yue; Jang, Houk; Lee, Sang Yoon; Kim, Jong Min; Kim, Kwang S.; Ahn, Jong-Hyun; Kim, Philip; Choi, Jae-Young; Hong, Byung Hee (2009). “Large-scale pattern growth of graphene films for stretchable transparent electrodes”. Nature457 (7230): 706–10. Bibcode:2009Natur.457..706Kdoi:10.1038/nature07719PMID 19145232S2CID 4349731.
  93. Jump up to:a b Jobst, Johannes; Waldmann, Daniel; Speck, Florian; Hirner, Roland; Maude, Duncan K.; Seyller, Thomas; Weber, Heiko B. (2009). “How Graphene-like is Epitaxial Graphene? Quantum Oscillations and Quantum Hall Effect”. Physical Review B81 (19): 195434. arXiv:0908.1900Bibcode:2010PhRvB..81s5434Jdoi:10.1103/PhysRevB.81.195434S2CID 118710923.
  94. Jump up to:a b Shen, T.; Gu, J.J.; Xu, M; Wu, Y.Q.; Bolen, M.L.; Capano, M.A.; Engel, L.W.; Ye, P.D. (2009). “Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001)”. Applied Physics Letters95(17): 172105. arXiv:0908.3822Bibcode:2009ApPhL..95q2105Sdoi:10.1063/1.3254329S2CID 9546283.
  95. Jump up to:a b Wu, Xiaosong; Hu, Yike; Ruan, Ming; Madiomanana, Nerasoa K; Hankinson, John; Sprinkle, Mike; Berger, Claire; de Heer, Walt A. (2009). “Half integer quantum Hall effect in high mobility single layer epitaxial graphene”. Applied Physics Letters95 (22): 223108. arXiv:0909.2903Bibcode:2009ApPhL..95v3108Wdoi:10.1063/1.3266524S2CID 118422866.
  96. Jump up to:a b Lara-Avila, Samuel; Kalaboukhov, Alexei; Paolillo, Sara; Syväjärvi, Mikael; Yakimova, Rositza; Fal’ko, Vladimir; Tzalenchuk, Alexander; Kubatkin, Sergey (7 July 2009). “SiC Graphene Suitable For Quantum Hall Resistance Metrology”. Science BreviaarXiv:0909.1193Bibcode:2009arXiv0909.1193L.
  97. Jump up to:a b Alexander-Webber, J.A.; Baker, A.M.R.; Janssen, T.J.B.M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Piot, B. A.; Maude, D. K.; Nicholas, R.J. (2013). “Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene”. Physical Review Letters111 (9): 096601. arXiv:1304.4897Bibcode:2013PhRvL.111i6601Adoi:10.1103/PhysRevLett.111.096601PMID 24033057S2CID 118388086.
  98. ^ Fuhrer, Michael S. (2009). “A physicist peels back the layers of excitement about graphene”. Nature459 (7250): 1037. Bibcode:2009Natur.459.1037Fdoi:10.1038/4591037ePMID 19553953S2CID 203913300.
  99. Jump up to:a b Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y.-W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P. (2006). “Landau-Level Splitting in Graphene in High Magnetic Fields”. Physical Review Letters96 (13): 136806. arXiv:cond-mat/0602649Bibcode:2006PhRvL..96m6806Zdoi:10.1103/PhysRevLett.96.136806PMID 16712020S2CID 16445720.
  100. Jump up to:a b c d Du, X.; Skachko, Ivan; Duerr, Fabian; Luican, Adina; Andrei, Eva Y. (2009). “Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene”. Nature462 (7270): 192–195. arXiv:0910.2532Bibcode:2009Natur.462..192Ddoi:10.1038/nature08522PMID 19829294S2CID 2927627.
  101. Jump up to:a b Bolotin, K.; Ghahari, Fereshte; Shulman, Michael D.; Stormer, Horst L.; Kim, Philip (2009). “Observation of the fractional quantum Hall effect in graphene”. Nature462 (7270): 196–199. arXiv:0910.2763Bibcode:2009Natur.462..196Bdoi:10.1038/nature08582PMID 19881489S2CID 4392125.
  102. ^ Bordag, M.; Fialkovsky, I. V.; Gitman, D. M.; Vassilevich, D. V. (2009). “Casimir interaction between a perfect conductor and graphene described by the Dirac model”. Physical Review B80 (24): 245406. arXiv:0907.3242Bibcode:2009PhRvB..80x5406Bdoi:10.1103/PhysRevB.80.245406S2CID 118398377.
  103. ^ Fialkovsky, I. V.; Marachevsky, V.N.; Vassilevich, D. V. (2011). “Finite temperature Casimir effect for graphene”. Physical Review B84 (35446): 35446. arXiv:1102.1757Bibcode:2011PhRvB..84c5446Fdoi:10.1103/PhysRevB.84.035446S2CID 118473227.
  104. ^ Dobson, J. F.; White, A.; Rubio, A. (2006). “Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals”. Physical Review Letters96 (7): 073201. arXiv:cond-mat/0502422Bibcode:2006PhRvL..96g3201Ddoi:10.1103/PhysRevLett.96.073201PMID 16606085S2CID 31092090.
  105. Jump up to:a b c Fuhrer, M. S. (2013). “Critical Mass in Graphene”. Science340(6139): 1413–1414. Bibcode:2013Sci…340.1413Fdoi:10.1126/science.1240317PMID 23788788S2CID 26403885.
  106. ^ Cismaru, Alina; Dragoman, Mircea; Dinescu, Adrian; Dragoman, Daniela; Stavrinidis, G.; Konstantinidis, G. (2013). “Microwave and Millimeterwave Electrical Permittivity of Graphene Monolayer”. arXiv:1309.0990Bibcode:2013arXiv1309.0990C.
  107. ^ Kuzmenko, A. B.; Van Heumen, E.; Carbone, F.; Van Der Marel, D. (2008). “Universal infrared conductance of graphite”. Physical Review Letters100 (11): 117401. arXiv:0712.0835Bibcode:2008PhRvL.100k7401Kdoi:10.1103/PhysRevLett.100.117401PMID 18517825S2CID 17595181.
  108. ^ “Graphene Gazing Gives Glimpse Of Foundations Of Universe”ScienceDaily. 4 April 2008.
  109. ^ Jussila, Henri; Yang, He; Granqvist, Niko; Sun, Zhipei (5 February 2016). “Surface plasmon resonance for characterization of large-area atomic-layer graphene film”. Optica3 (2): 151–158. Bibcode:2016Optic…3..151Jdoi:10.1364/OPTICA.3.000151.
  110. ^ Lin, Xiao; Xu, Yang; Zhang, Baile; Hao, Ran; Chen, Hongsheng; Li, Erping (2013). “Unidirectional surface plasmons in nonreciprocal graphene”New Journal of Physics15 (11): 113003. Bibcode:2013NJPh…15k3003Ldoi:10.1088/1367-2630/15/11/113003.
  111. ^ Zhang, Y.; Tang, Tsung-Ta; Girit, Caglar; Hao, Zhao; Martin, Michael C.; Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng (11 June 2009). “Direct observation of a widely tunable bandgap in bilayer graphene”. Nature459 (7248): 820–823. Bibcode:2009Natur.459..820Zdoi:10.1038/nature08105OSTI 974550PMID 19516337S2CID 205217165.
  112. ^ Liu, Junfeng; Wright, A. R.; Zhang, Chao; Ma, Zhongshui (29 July 2008). “Strong terahertz conductance of graphene nanoribbons under a magnetic field”Appl Phys Lett93 (4): 041106–041110. Bibcode:2008ApPhL..93d1106Ldoi:10.1063/1.2964093.
  113. Jump up to:a b Kurum, U.; Liu, Bo; Zhang, Kailiang; Liu, Yan; Zhang, Hao (2011). “Electrochemically tunable ultrafast optical response of graphene oxide”. Applied Physics Letters98 (2): 141103. Bibcode:2011ApPhL..98b1103Mdoi:10.1063/1.3540647.
  114. ^ Sreekanth, K.V.; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting (2012). “Excitation of surface electromagnetic waves in a graphene-based Bragg grating”Scientific Reports2: 737. Bibcode:2012NatSR…2E.737Sdoi:10.1038/srep00737PMC 3471096PMID 23071901.
  115. ^ Bao, Qiaoliang; Zhang, Han; Wang, Yu; Ni, Zhenhua; Yan, Yongli; Shen, Ze Xiang; Loh, Kian Ping; Tang, Ding Yuan (2009). “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers” (PDF)Advanced Functional Materials19 (19): 3077–3083. arXiv:0910.5820Bibcode:2009arXiv0910.5820Bdoi:10.1002/adfm.200901007S2CID 59070301. Archived from the original (PDF) on 17 July 2011.
  116. ^ Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. (2009). “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene” (PDF)Optics Express17 (20): 17630–5. arXiv:0909.5536Bibcode:2009OExpr..1717630Zdoi:10.1364/OE.17.017630PMID 19907547S2CID 207313024. Archived from the original (PDF) on 17 July 2011.
  117. ^ Zhang, H.; Bao, Qiaoliang; Tang, Dingyuan; Zhao, Luming; Loh, Kianping (2009). “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker” (PDF)Applied Physics Letters95 (14): P141103. arXiv:0909.5540Bibcode:2009ApPhL..95n1103Zdoi:10.1063/1.3244206S2CID 119284608. Archived from the original (PDF) on 17 July 2011.
  118. ^ Zhang, H.; Tang, Dingyuan; Knize, R. J.; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping (2010). “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser” (PDF)Applied Physics Letters96 (11): 111112. arXiv:1003.0154Bibcode:2010ApPhL..96k1112Zdoi:10.1063/1.3367743S2CID 119233725. Archived from the original (PDF) on 21 May 2010. Retrieved 19 March 2010.
  119. ^ Zhang (2009). “Graphene: Mode-locked lasers”. NPG Asia Materialsdoi:10.1038/asiamat.2009.52.
  120. ^ Zheng, Z.; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun (2012). “Microwave and optical saturable absorption in graphene”. Optics Express20 (21): 23201–23214. Bibcode:2012OExpr..2023201Zdoi:10.1364/OE.20.023201PMID 23188285.
  121. ^ Zhang, H.; Virally, Stéphane; Bao, Qiaoliang; Kian Ping, Loh; Massar, Serge; Godbout, Nicolas; Kockaert, Pascal (2012). “Z-scan measurement of the nonlinear refractive index of graphene”. Optics Letters37 (11): 1856–1858. arXiv:1203.5527Bibcode:2012OptL…37.1856Zdoi:10.1364/OL.37.001856PMID 22660052.
  122. ^ Dong, H; Conti, C; Marini, A; Biancalana, F (2013). “Terahertz relativistic spatial solitons in doped graphene metamaterials”. Journal of Physics B: Atomic, Molecular and Optical Physics46 (15): 15540. arXiv:1107.5803Bibcode:2013JPhB…46o5401Ddoi:10.1088/0953-4075/46/15/155401S2CID 118338133.
  123. ^ Onida, Giovanni; Rubio, Angel (2002). “Electronic excitations: Density-functional versus many-body Green’s-function approaches” (PDF)Rev. Mod. Phys74 (2): 601–659. Bibcode:2002RvMP…74..601Odoi:10.1103/RevModPhys.74.601hdl:10261/98472.
  124. ^ Yang, Li; Deslippe, Jack; Park, Cheol-Hwan; Cohen, Marvin; Louie, Steven (2009). “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene”. Physical Review Letters103 (18): 186802. arXiv:0906.0969Bibcode:2009PhRvL.103r6802Ydoi:10.1103/PhysRevLett.103.186802PMID 19905823S2CID 36067301.
  125. ^ Prezzi, Deborah; Varsano, Daniele; Ruini, Alice; Marini, Andrea; Molinari, Elisa (2008). “Optical properties of graphene nanoribbons: The role of many-body effects”. Physical Review B77 (4): 041404. arXiv:0706.0916Bibcode:2008PhRvB..77d1404Pdoi:10.1103/PhysRevB.77.041404S2CID 73518107.
    Yang, Li; Cohen, Marvin L.; Louie, Steven G. (2007). “Excitonic Effects in the Optical Spectra of Graphene Nanoribbons”. Nano Letters7 (10): 3112–5. arXiv:0707.2983Bibcode:2007NanoL…7.3112Ydoi:10.1021/nl0716404PMID 17824720S2CID 16943236.
    Yang, Li; Cohen, Marvin L.; Louie, Steven G. (2008). “Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons”. Physical Review Letters101 (18): 186401. Bibcode:2008PhRvL.101r6401Ydoi:10.1103/PhysRevLett.101.186401PMID 18999843.
  126. ^ Zhu, Xi; Su, Haibin (2010). “Excitons of Edge and Surface Functionalized Graphene Nanoribbons”J. Phys. Chem. C114 (41): 17257–17262. doi:10.1021/jp102341b.
  127. ^ Wang, Min; Li, Chang Ming (2011). “Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons”. Nanoscale3 (5): 2324–8. Bibcode:2011Nanos…3.2324Wdoi:10.1039/c1nr10095ePMID 21503364S2CID 31835103.
  128. ^ Bolmatov, Dima; Mou, Chung-Yu (2010). “Josephson effect in graphene SNS junction with a single localized defect”. Physica B405 (13): 2896–2899. arXiv:1006.1391Bibcode:2010PhyB..405.2896Bdoi:10.1016/j.physb.2010.04.015S2CID 119226501.
    Bolmatov, Dima; Mou, Chung-Yu (2010). “Tunneling conductance of the graphene SNS junction with a single localized defect”. Journal of Experimental and Theoretical Physics (JETP)110 (4): 613–617. arXiv:1006.1386Bibcode:2010JETP..110..613Bdoi:10.1134/S1063776110040084S2CID 119254414.
  129. ^ Zhu, Xi; Su, Haibin (2011). “Scaling of Excitons in Graphene Nanoribbons with Armchair Shaped Edges”Journal of Physical Chemistry A115 (43): 11998–12003. Bibcode:2011JPCA..11511998Zdoi:10.1021/jp202787hPMID 21939213.
  130. Jump up to:a b Tombros, Nikolaos; et al. (2007). “Electronic spin transport and spin precession in single graphene layers at room temperature”. Nature448(7153): 571–575. arXiv:0706.1948Bibcode:2007Natur.448..571Tdoi:10.1038/nature06037PMID 17632544S2CID 4411466.
  131. Jump up to:a b Cho, Sungjae; Chen, Yung-Fu; Fuhrer, Michael S. (2007). “Gate-tunable Graphene Spin Valve”. Applied Physics Letters91 (12): 123105. arXiv:0706.1597Bibcode:2007ApPhL..91l3105Cdoi:10.1063/1.2784934.
  132. ^ Ohishi, Megumi; et al. (2007). “Spin Injection into a Graphene Thin Film at Room Temperature”. Jpn J Appl Phys46 (25): L605–L607. arXiv:0706.1451Bibcode:2007JaJAP..46L.605Odoi:10.1143/JJAP.46.L605S2CID 119608880.
  133. ^ Hashimoto, T.; Kamikawa, S.; Yagi, Y.; Haruyama, J.; Yang, H.; Chshiev, M. (2014). “Graphene edge spins: spintronics and magnetism in graphene nanomeshes” (PDF)Nanosystems: Physics, Chemistry, Mathematics5 (1): 25–38.
  134. ^ T. Hashimoto, S. Kamikawa, Y. Yagi, J. Haruyama, H. Yang, M. Chshiev, “Graphene edge spins: spintronics and magnetism in graphene nanomeshes”, February 2014, Volume 5, Issue 1, pp 25
  135. ^ Coxworth, Ben (27 January 2015). “Scientists give graphene one more quality – magnetism”. Gizmag. Retrieved 6 October 2016.
  136. ^ Berber, Savas; Kwon, Young-Kyun; Tománek, David (2000). “Unusually High Thermal Conductivity of Carbon Nanotubes”. Phys. Rev. Lett84(20): 4613–6. arXiv:cond-mat/0002414Bibcode:2000PhRvL..84.4613Bdoi:10.1103/PhysRevLett.84.4613PMID 10990753S2CID 9006722.
  137. Jump up to:a b Balandin, A. A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning (20 February 2008). “Superior Thermal Conductivity of Single-Layer Graphene”. Nano Letters8 (3): 902–907. Bibcode:2008NanoL…8..902Bdoi:10.1021/nl0731872PMID 18284217S2CID 9310741.
  138. ^ Y S. Touloukian (1970). Thermophysical Properties of Matter: Thermal conductivity : nonmetallic solids. IFI/Plenum. ISBN 978-0-306-67020-6.
  139. ^ Cai, Weiwei; Moore, Arden L.; Zhu, Yanwu; Li, Xuesong; Chen, Shanshan; Shi, Li; Ruoff, Rodney S. (2010). “Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition”. Nano Letters10 (5): 1645–1651. Bibcode:2010NanoL..10.1645Cdoi:10.1021/nl9041966ISSN 1530-6984PMID 20405895S2CID 207664146
  140. https://nano-magazine.com/news/2019/4/13/why-are-there-challenges-with-graphene-manufacturing

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Modifications to this referenced work is licensed under the agreement.